Isomet Modular Synthesiser (iMS) API
vi.4.2

Generated by Doxygen 1.8.10

Wed Nov 1 2017 15:36:36

Contents

1 iMS Library and APl Documentation 1
1.1 Contents o 1

1.2 OVEIVIEW . . . o o e e 1

1.3 What'sIncluded e e e 2
1.3.1 Application Programmer's Interface oo 2

1.3.2 .INETWrapper. e 2

1.4 Platform e e e e 2

2 Software Library Architecture 5
2.1 Software Library Architecture L 5
2.1.1 Connection Listand IMS System 6

2.1.2 Features e 6

2.1.3 CompensationTables e 6

214 Images/ImageFiles e 6

215 Utilities . . . o e 7

3 Cross Language Support and Scripting Wrappers 9
3.1 INETWrapper e e 9
3.1.1 nitialisation L L 9

3.1.2 COoNCEPS . . . o i e e e 9

3.1.3 WPF and INotifyPropertyChanged 9

3.1.4 More Information e 10

3.2 Python Wrapper e e 10

4 Utilities: iMS Hardware Server 11
4.1 IMS Hardware Server e e e e 11

5 Utilities: iMS Studio 13
51 IMSStudio e 13

6 Tutorial 1(a): Setting up a project and connecting to an iMS 15
6.1 Tutorial 1(a): Setting up a project and connectingtoaniMS 15

6.1.1 Prerequisites L 15

CONTENTS

7 Tutorial 1(b): Programming and Playing an Image

8

10

11

12

6.1.2 Step 1
6.1.3 Step2
6.1.4 Step3
6.1.5 Step4
6.1.6 Step5
6.1.7 Step6
6.1.8 Step7
6.1.9 Step8

7.1 Tutorial 1(b): Programming and Playing an Image
7.1.1 Step 1: Creating & Downloading a Compensation Table
7.1.2 Step 2: Creating & Downloading an Image
7.1.3 Step 3: Observing the Output
7.1.4 Full Tutorial 1 Code Listing

Tutorial 2: Using the APl Message Handling System
8.1 Tutorial 2: Using the API Message Handling System

Glossary

91 Glossary

Release Notes

101 vi42 ..o
102 vi41 o L
103 v140 . . . oL
104 v13.0 L
105 v126
106 v1.25
107 v1i24 . ..o
10.8 v1.23
109 vi22 L
10.10v1i.21 . o o
10.11v1.20 . . . oL
1012v11.0 . . Lo
10.13v1.0.1 . . L
10.14v1.0.0 Lo

Bug List

Namespace Index

43

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS v
12.1 Namespace List 43

13 Hierarchical Index 45
13.1 Class Hierarchy e 45

14 Class Index 47
14.1 Class List e 47

15 File Index 51
15.1 File List e 51

16 Namespace Documentation 53
16.1 IMS Namespace Reference 53
16.1.1 Detailed Description e 56

16.1.2 Typedef Documentation e 57

16.1.2.1 TBENtry 57

16.1.3 Enumeration Type Documentation 57

16.1.3.1 FileDefault 57

16.1.3.2 FileSystemTypes 57

16.1.3.3 ImageRepeats e 57

16.1.3.4 SequenceTermAction e 58

17 Class Documentation 59
17.1 iMS::Auxiliary Class Reference 59
17.1.1 Detailed Description e e 60

17.1.2 Member Enumeration Documentation o 60

17.1.21 DDS_PROFILE 60

17.1.22 EXT_ANLG_INPUT e e e e e e 61

17.1.23 LED_SINK e 61

17.1.24 LED_SOURCE e e e e 61

17.1.3 Constructor & Destructor Documentation. L. 62

17.1.3.1 Auxiliary(const IMSSystem &ims) L 62

17.1.4 Member Function Documentation 62

17.1.4.1 AssignLED(const LED_SINK &sink, const LED_SOURCE &src) const 62

17.1.4.2 AuxiliaryEventSubscribe(const int message, IEventHandler xhandler) 62

17.1.4.3 AuxiliaryEventUnsubscribe(const int message, const IEventHandler xhandler) . . 63

17.1.4.4 GetAnalogData()const L 63

17.1.4.5 SetDDSProfile(const DDS_PROFILE &prflyconst 63

17.1.4.6 SetDDSProfile(const DDS_PROFILE &prfl, const std::uint16_t &select) const . . 63

17.1.4.7 UpdateAnalogIn() e 64

17.1.4.8 UpdateAnalogOut(Percent &pct) const 64

17.2 iMS::AuxiliaryEvents Class Reference L 64

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Vi CONTENTS

17.2.1 Detailed Description e 65
17.2.2 Member Enumeration Documentation 65
17.2.21 Events e 65

17.3 iIMS::IMSController::Capabilities Struct Reference 65
17.3.1 Detailed Description 66

17.4 iIMS::IMSSynthesiser::Capabilities Struct Reference 66
17.4.1 Detailed Description e 67

17.5 iMS::CompensationEvents Class Reference 68
17.5.1 Detailed Description e 68
17.5.2 Member Enumeration Documentation L L. 68
17.5.21 Events e 68

17.6 iMS::CompensationFunction Class Reference 69
17.6.1 Detailed Description 70
17.6.2 Constructor & Destructor Documentation, 70
17.6.2.1 CompensationFunction()o 70

17.7 iMS::CompensationFunctionList Class Reference 70
17.7.1 Detailed Description L 71

17.8 iIMS::CompensationPoint Class Reference 71
17.8.1 Detailed Description e 72
17.8.2 Constructor & Destructor Documentation 73

17.8.2.1 CompensationPoint(Percent ampl=0.0, Degrees phase=0.0, unsigned int sync«

_dig=0, double sync_anlg=0.0) 73

17.8.3 Member Function Documentation 74
17.8.3.1 Amplitude(const Percent &l) 74
17.8.3.2 Amplitude() const L 74
17.8.3.3 operator==(CompensationPoint const &hs)const 74
17.8.3.4 Phase(const Degrees &phase) 74
17.8.3.5 Phase()const e 74
17.8.3.6 SyncAnlg(constdouble &sync)o 75
17.8.3.7 SyncAnlg() const 75
17.8.3.8 SyncDig(const unsigned int&sync)o 75
17.8.3.9 SyncDig() const 75

17.9 iMS::CompensationPointSpecification Class Reference 75
17.9.1 Detailed Description e 76
17.9.2 Constructor & Destructor Documentation 76

17.9.2.1 CompensationPointSpecification(CompensationPoint pt=CompensationPoint(),

MHz f=50.0) e e e 76

17.9.3 Member Function Documentation 77
17.9.3.1 operator==(CompensationPointSpecification const &rhs) const 77
17.10iMS::CompensationTable Class Reference 77

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS vii
17.10.1 Detailed Description e e 78
17.10.2 Constructor & Destructor Documentation. 79

17.10.2.1 CompensationTable() 79
17.10.2.2 CompensationTable(const IMSSystem &MS) 79
17.10.2.3 CompensationTable(int LUTDepth, const MHz &lower_freq, const MHz &upper«
freq) . . . 79
17.10.2.4 CompensationTable(const IMSSystem &iMS, const CompensationPoint &pt) 80
17.10.2.5 CompensationTable(int LUTDepth, const MHz &lower_freq, const MHz &upper«
_freq, const CompensationPoint &pt) Lo 81
17.10.2.6 CompensationTable(const IMSSystem &iMS, const std::string &fileName) 81
17.10.2.7 CompensationTable(int LUTDepth, const MHz &lower_freq, const MHz &upper«
_freq, const std::string &fileName)o Lo 81
17.10.2.8 CompensationTable(const IMSSystem &iMS, constintentry) 82
17.10.3 Member Function Documentation 82
17.10.3.1 FrequencyAt(const unsigned intindex) const 82
17.10.3.2 Save(const std::string &fileName) const 82
17.10.3.3 Size() const e 84
17.11iMS::CompensationTableDownload Class Reference 84
17.11.1 Detailed Description e 85
17.11.2 Constructor & Destructor Documentation. 86
17.11.2.1 CompensationTableDownload(IMSSystem &ims, const CompensationTable &tbl) 86
17.11.3 Member Function Documentation 86
17.11.3.1 CompensationTableDownloadEventSubscribe(const int message, |IEventHandler
xhandler) L 86
17.11.3.2 CompensationTableDownloadEventUnsubscribe(const int message, const |«
EventHandler xhandler) 87
17.11.3.3 GetVerifyError() 87
17.11.3.4 StartDownload() e 87
17.11.3.5 StartVerify() o 88
17.11.3.6 Store(FileDefault def, const std::string &FileName) const 88
17.12iMS::ConnectionList::ConnectionConfig Struct Reference 88
17.12.1 Detailed Description 89
17.12.2 Constructor & Destructor Documentation 90
17.12.2.1 ConnectionConfig(bool inc=true, std:list< std:string > mask=std::list< std«
astring >()) - . . o e 90
17.12.3 Member Data Documentation. 90
17.12.3.1 IncludelnScan L 90
171232 PortMask e 90
17.13iMS::ConnectionList Class Reference 90
17.13.1 Detailed Description e 91
17.13.2 Member Function Documentation 92
17.13.21 config() - . - .« o o e e e 92

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

viii CONTENTS

17.13.22 modules() const L 93

17.13.2.3 scan() . . . o o 93
17.14iMS::DDSScriptDownload Class Reference o 93
17.14.1 Detailed Description e 94
17.14.2 Constructor & Destructor Documentation. 94
17.14.2.1 DDSScriptDownload(IMSSystem &ims, const DDSScript &script) 94

17.14.3 Member Function Documentation 94

17.14.3.1 Program(const std::string &FileName, FileDefault def=FileDefault::NON_DEFA+«

ULT)const o 94
17.15iMS::DDSScriptRegister Class Reference o o o 95
17.15.1 Detailed Description 96
17.15.2 Member Enumeration Documentation Lo L 96
1715210 Name 96

17.15.3 Constructor & Destructor Documentation 97
17.15.3.1 DDSScriptRegister(Namename) 97

17.15.3.2 DDSScriptRegister(Name name, const std::initializer_list< std::uint8_t > &data) 97

17.15.4 Member Function Documentation 98
17.15.4.1 append(const std::uint8_t &)o 98
17.16iMS::Degrees Class Reference 98
17.16.1 Detailed Description 99
17.16.2 Constructor & Destructor Documentation 99
17.16.2.1 Degrees(double arg) e 99
17.16.3 Member Function Documentation 99
17.16.3.1 operator double() const 99
17.16.3.2 operator=(double arg) 99
17.16.3.3 RenderAsCalibrationTone(const IMSSystem &, const Degrees) 100
17.16.3.4 RenderAsCompensationPoint(const IMSSystem &, const Degrees) 100
17.16.3.5 RenderAslmagePoint(const IMSSystem &, const Degrees) 100
17.17iMS::DequeBase< T > Class Template Reference 100
17.17.1 Detailed Description 102
17.17.2 Member Function Documentation 102
1717.210 begin() o 102
17.17.2.2 begin() const L e 103
17.17.2.3 cbegin() const L 103
171724 cend()const 103
174725 clear() o e 103
1717.26 end() 103
1717.2.7 end() CONSt L e 104
17.17.2.8 GetUUID() const o e 104
17.17.2.9 insert(iterator pos, const T &value) 104

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS ix

17.17.2.10ModifiedTime() const L 104
17.17.2.11ModifiedTimeFormat() consto 104
1717.242Name() const L e 105
17.17.2.13perator==(DequeBase const &rhs) const 105
17.17.24operator[J(intidX) 105
17.17.21%perator[](intidx) const 105
17.18iMS::Diagnostics Class Reference L 106
17.18.1 Detailed Description 107
17.18.2 Member Enumeration Documentationo o 107
17.18.2.1 MEASURE 107
17.18.22 TARGET e e e 108
17.18.3 Constructor & Destructor Documentation 108
17.18.3.1 Diagnostics(const IMSSystem &ims) 108
17.18.4 Member Function Documentation 108
17.18.4.1 DiagnosticsEventSubscribe(const int message, IEventHandler xhandler) 108

17.18.4.2 DiagnosticsEventUnsubscribe(const int message, const IEventHandler xhandler) 109

17.18.4.3 GetDiagnosticsData() const Lo 109

17.18.4.4 GetLoggedHours(const TARGET &tgt)const 109

17.18.4.5 GetTemperature(const TARGET &tgt)const 110

17.18.4.6 UpdateDiagnostics() o e 110
17.19iMS::DiagnosticsEvents Class Reference o o oo 110
17.19.1 Detailed Description L 111
17.19.2 Member Enumeration Documentation o L. 111
171921 Events 111
17.20iIMS::FAP Struct Reference L 111
17.20.1 Detailed Description e 112
17.20.2 Member Function Documentation 113
17.20.2.1 operator==(const FAP &other)const 113
17.21iMS::FileSystemManager Class Reference oo, 113
17.21.1 Detailed Description 114
17.21.2 Constructor & Destructor Documentationo 114
17.21.2.1 FileSystemManager(IMSSystem &ms) 114

17.21.3 Member Function Documentation L 114
17.21.3.1 ClearDefault(FileSystemindex index) 114

17.21.3.2 ClearDefault(const std::string &FileName) 114

17.21.3.3 Delete(FileSystemIndexindex), 115

17.21.3.4 Delete(const std::string &FileName) oL 115

17.21.3.5 Execute(FileSystemIndexindex) L. 116

17.21.3.6 Execute(const std::string &FileName) 0oL 116

17.21.3.7 FindSpace(std::uint32_t &addr, const std::vector< std::uint8_t > &data) const . 116

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS

17.21.3.8 Sanitize() 117
17.21.3.9 SetDefault(FileSystemIndexindex) 117
17.21.3.10SetDefault(const std::string &FileName) 117
17.22iMS::FileSystemTableEntry Struct Referenceo 118
17.22.1 Detailed Description e 118
17.22.2 Constructor & Destructor Documentation., 119
17.22.2.1 FileSystemTableEntry() 119

17.22.2.2 FileSystemTableEntry(FileSystemTypes type, std::uint32_t addr, std:uint32_«
tlength, FileDefaultdef) oo 119

17.22.2.3 FileSystemTableEntry(FileSystemTypes type, std::uint32_t addr, std::uint32_«
tlength, FileDefault def, std::stringname) 119
17.22.3 Member Function Documentation 119
17.22.3.1 Address() const L 119
17.22.3.2 IsDefault() const 119
17.22.3.3 Length()const 120
17.22.3.4 Name() const o e 120
17.22.35 Type() const L e 120
17.23iIMS::FileSystemTableViewer Class Reference 120
17.23.1 Detailed Description L 121
17.23.2 Constructor & Destructor Documentationo 121
17.23.2.1 FileSystemTableViewer(const IMSSystem &ims) 121
17.23.3 Member Function Documentation 121
17.23.3.1 Entries() const L 121
17.23.3.2 IsValid() const e 121
17.23.3.3 operator[](const std::size_tidx)consto 122
17.23.4 Friends And Related Function Documentation 122
17.23.4.1 operator<<<< e 122
17.24iMS::Frequency Class Reference o e 123
17.24.1 Detailed Description e 123
17.24.2 Constructor & Destructor Documentation 124
17.24.2.1 Frequency(double arg=0.0) 124
17.24.3 Member Function Documentation Lo 124
17.24.3.1 operator double() const 124
17.24.3.2 operator=(double arg) 124

17.24.3.3 RenderAsPointRate(const IMSSystem &, const Frequency, const bool
PrescalerDisable=false) 124
17.25IMS::FWVersion Struct Reference L 125
17.25.1 Detailed Description e 125
17.25.2 Friends And Related Function Documentation 125
17.25.2.1 operator<<<< e e 125
17.26iMS::IBulkTransfer Class Reference 126

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS i

17.26.1 Detailed Description e e 126
17.26.2 Member Function Documentation 127
17.26.2.1 GetVerifyError()=0 127

17.26.2.2 StartDownload()=0 127

17.26.2.3 StartVerify()=0 127
17.27iMS::IEventHandler Class Reference 128
17.27.1 Detailed Description 128
17.27.2 Member Function Documentation 129

17.27.2.1 EventAction(void xsender, const int message, const int param=0) 129
17.27.2.2 EventAction(void xsender, const int message, const int param, const int param2) 130
17.27.2.3 EventAction(void xsender, const int message, const double param) 130

17.27.2.4 EventAction(void xsender, const int message, const int param, const std::vector<

stdiuint8_t>data) 131

17.27.2.5 operator==(const [EventHandlere) 131
17.28iMS::lmage Class Reference 131
17.28.1 Detailed Description e 133
17.28.2 Constructor & Destructor Documentation. L. 134
17.28.2.1 Image(const std::string &name=""")o 134

17.28.2.2 Image(size_t nPts, const ImagePoint &pt, const std::string &name=""") 134

17.28.2.3 Image(size_t nPts, const ImagePoint &pt, const Frequency &f, const std::string
&name=""") e 134

17.28.2.4 Image(size_t nPts, const ImagePoint &pt, const int div, const std::string &name="""")135

17.28.2.5 Image(const_iterator first, const_iterator last, const std::string &name="""") . . . 135
17.28.2.6 Image(const_iterator first, const_iterator last, const Frequency &f, const std::string
&name=""") Lo e 135
17.28.2.7 Image(const_iterator first, const_iterator last, const int div, const std:string
&name=""") ..o e 136
17.28.3 Member Function Documentation 136
17.28.3.1 AddPoint(const ImagePoint&pt) 136
172832 Clear() - o o 136
17.28.3.3 ClockRate(const Frequency &f) Lo 137
17.28.3.4 ClockRate() const 137
17.28.3.5 Description() 137
17.28.3.6 ExtClockDivide(constintdiv) Lo 137
17.28.3.7 ExtClockDivide() const 138
17.28.3.8 InsertPoint(iterator it, const ImagePoint&pt) 138
17.28.3.9 InsertPoint(iterator it, size_t nPts, const ImagePoint&pt) 138
17.28.3.10nsertPoint(iterator it, const_iterator first, const_iteratorlast) 139
17.28.3.11RemovePoint(iteratorit)o 139
17.28.3.12RemovePoint(iterator first, iteratorlast) 140
17.28.3.138ize() const 140

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS

17.29iMS::ImageDownload Class Reference 140
17.29.1 Detailed Description 141
17.29.2 Constructor & Destructor Documentation 142

17.29.2.1 ImageDownload(IMSSystem &ims, const Image &mg) 142
17.29.3 Member Function Documentation 142
17.29.3.1 GetVerifyError() 142

17.29.3.2 ImageDownloadEventSubscribe(const int message, IEventHandler xhandler) . . 142

17.29.3.3 ImageDownloadEventUnsubscribe(const int message, const IEventHandler

xhandler) L e 143
17.29.3.4 StartDownload() 143
17.29.3.5 StartVerify() 143
17.30iMS::ImageDownloadEvents Class Reference 144
17.30.1 Detailed Description 144
17.30.2 Member Enumeration Documentation L Lo oL 144
17.30.2.1 Events e 144
17.31iMS::ImageGroup Class Reference 145
17.31.1 Detailed Description 147
17.31.2 Constructor & Destructor Documentation. 147
17.31.2.1 ImageGroup(const std::string &name=""", const std:itime_t &create_time=std«
:time(nullptr), const std::time_t &modified_time=std::time(nullptr)) 147
17.31.3 Member Function Documentation 147
17.31.3.1 Addlmage(const Image &img@)o 147
1731832 AUhON() .« « o o o e 147
17.31.3.3 Author() const L 148
17831834 Clear() . . . v v v o e 148
17.31.3.5 Company() o o e 148
17.31.3.6 Company() const 148
17.31.3.7 CreatedTime() const 148
17.31.3.8 CreatedTimeFormat()const 148
17.31.3.9 Description() e 149
17.31.3.10escription() const 149
17.31.3.11Insertimage(iterator it, const Image &mg) 149
17.31.3.12Removelmage(iteratorit)o 149
17.31.3.13Removelmage(iterator first, iterator last) 149
17.31.3.14Revision() e e e e e e 149
17.31.3.15Revision() const L e e e 150
17.831.3.165equence() o o e e e e 150
17.31.3.17Sequence() CONSt L L e 150
17.31.3.185ize() const L 150
17.32iMS::ImageGroupList Class Reference 150

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS xiii

17.32.1 Detailed Description e e 151
17.33iMS::ImagePlayer Class Reference 151
17.33.1 Detailed Description 153
17.33.2 Member Typedef Documentation 154
17.33.2.1 Repeats e 154
17.33.3 Member Enumeration Documentation o 154
17.33.3.1 ImageTrigger e 154
17.33.3.2 PointClock 154
17.33.3.3 Polarity e 154
17.33.3.4 StopStyle 155
17.33.4 Constructor & Destructor Documentation 155
17.33.4.1 ImagePlayer(const IMSSystem &ims, const Image &mg) 155
17.33.4.2 ImagePlayer(const IMSSystem &ims, const Image &img, const PlayConfiguration
&cfg) . . e 155
17.33.5 Member Function Documentation 156
17.33.5.1 GetProgress()« o 156
17.33.5.2 ImagePlayerEventSubscribe(const int message, |IEventHandler xhandler) 156

17.33.5.3 ImagePlayerEventUnsubscribe(const int message, const IEventHandler xhandler) 156

17.33.5.4 Play(ImageTrigger start_trig=ImageTrigger::CONTINUOUS) 157
17.33.5.5 SetPostDelay(const std::chrono::duration< double > &dly) 157
17.33.5.6 Stop(StopStyle stop) 157
17.335.7 SIOP() « « o v e e e e 158
17.34iMS::ImagePlayerEvents Class Reference L. 158
17.34.1 Detailed Description L 158
17.34.2 Member Enumeration Documentation L L oo 159
17.34.2.1 Events e e e 159
17.35iMS::ImagePoint Class Reference L 159
17.35.1 Detailed Description e 160
17.35.2 Constructor & Destructor Documentation 160
17.835.2.1 ImagePoint(FAP fap) 160
17.35.2.2 ImagePoint(FAP ch1, FAP ch2, FAP ch3, FAPch4) 160
17.35.2.3 ImagePoint(FAP fap, float synca, unsigned intsyned) 161
17.35.2.4 ImagePoint(FAP ch1, FAP ch2, FAP ch3, FAP ch4, float synca_1, float synca_2,
unsignedintsyncd) L 161
17.35.3 Member Function Documentation 161
17.35.3.1 GetFAP(const RFChannel)const 161
17.835.3.2 GetSyncA(intindex) consto 161
17.835.3.3 GetSyncD() const 161
17.35.3.4 operator==(ImagePoint const &rhs)const 162
17.835.3.5 SetAll(const FAP &) e 162

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Xiv CONTENTS

17.35.3.6 SetFAP(const RFChannel,const FAP &) 162

17.35.3.7 SetFAP(const RFChannel) 162

17.35.3.8 SetSyncA(int index, const float &value)o oL 162

17.35.3.9 SetSyncD(const unsigned int &value) 163
17.36iMS::ImageProject Class Reference L 163
17.36.1 Detailed Description e 164
17.36.2 Constructor & Destructor Documentation 164
17.836.2.1 ImageProject() e 164

17.36.2.2 ImageProject(const std::string &fileName) 164

17.36.3 Member Function Documentation 165
17.36.3.1 Clear()« o o 165

17.36.3.2 CompensationFunctionContainer() 165

17.36.3.3 FreelmageContainer() 165

17.36.3.4 ImageGroupContainer() 165

17.36.3.5 Load(const std::string &fileName)o 165

17.36.3.6 Save(const std::string &fileName)o 165

17.36.3.7 ToneBufferContainer() 166
17.37iMS::ImageSequence Class Reference o o e 166
17.37.1 Detailed Description 167
17.37.2 Constructor & Destructor Documentation 167
17.37.2.1 ImageSequence(SequenceTermAction action, intval=0) 167

17.37.3 Member Function Documentation 168
17.37.3.1 OnTermination(SequenceTermAction act, intval=0) 168

17.37.3.2 TermAction() const L 168

17.37.3.3 TermValue() const L 168
17.38iMS::ImageSequenceEntry Struct Reference o Lo 168
17.38.1 Detailed Description e 169
17.38.2 Constructor & Destructor Documentation. 170

17.38.2.1 ImageSequenceEntry(const Image &img, const ImageRepeats &Rpt=Image«

Repeats::NONE, constintrpts=0) 170
17.38.2.2 ImageSequenceEntry(const ImageTableEntry &ite, const kHz &InternalClock=k«
Hz(1.0), const ImageRepeats &Rpt=ImageRepeats::NONE, const int rpts=0) . . 170
17.38.2.3 ImageSequenceEntry(const ImageTableEntry &ite, const int ExtClockDivide=1,
const ImageRepeats &Rpt=ImageRepeats::NONE, const int rpts=0) 170
17.38.3 Member Function Documentation 171
17.38.3.1 ExtDiv() const e 171
17.38.3.2 IntOsc() const e 171
17.38.3.3 NumRpts() const 171
17.38.3.4 operator==(ImageSequenceEntry const &rhs) const 171
17.38.3.5 PostimgDelay() 172
17.38.3.6 PostimgDelay() const 172

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS XV

17.38.3.7 RptType() const 172

17.838.3.8 SyncOutDelay() o o e 172

17.38.3.9 SyncOutDelay() const 172
17.38.3.10UUID() const 173
17.39iMS::ImageTableEntry Struct Reference 173
17.39.1 Detailed Description e 174
17.39.2 Constructor & Destructor Documentation. 174
17.39.2.1 ImageTableEntry() 174

17.39.3 Member Function Documentation 174
17.39.3.1 Address() const e e e 174

17.39.3.2 Format()const L 175

17.39.3.3 Handle()const 175

17.39.3.4 Name() const L 175

17.839.35 NPts()const e 175

17.39.3.6 Size()const 175

17.39.3.7 UUID() const e 176
17.40iMS::ImageTableViewer Class Reference 176
17.40.1 Detailed Description L 176
17.40.2 Constructor & Destructor Documentation 177
17.40.2.1 ImageTableViewer(const IMSSystem &ims) 177

17.40.3 Member Function Documentation 177
17.40.3.1 Entries() const L 177

17.40.3.2 operator[](const std::size_tidx)const 177

17.40.4 Friends And Related Function Documentation 178
17.40.4.1 operator<<<< e 178

17.41iMS:: IMSController Class Reference o e 178
17.41.1 Detailed Description 179
17.41.2 Member Function Documentation 179
17.41.2.1 Description() const 179

17.41.22 GetCap() const L 179

17.41.2.3 GetVersion() const 179

17.41.2.4 ImgTable() const 179

17.41.25 IsValid() const e 180

17.41.2.6 Model() const e 180
17.42iMS::IMSOption Class Reference 180
17.42.1 Detailed Description e 180
17.43iIMS::IMSSynthesiser Class Referenceo 181
17.43.1 Detailed Description e 181
17.43.2 Member Function Documentation 182
17.43.2.1 Description() const L 182

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

xvi CONTENTS

174322 FST()const o 182

17.43.2.3 GetCap() const o 182

17.43.2.4 GetVersion() const L 182

17.43.25 IsValid() const L 183

17.43.2.6 Model() const L 183
17.44iMS::IMSSystem Class Reference e 183
17.44 1 Detailed Description e 184
17.44.2 Member Function Documentation 184
17.44.2.1 Connect() o 184

17.44.2.2 Connection() const e e 184

17.44.2.3 ConnPort() const e 184

17.44.2.4 Ctlr(const IMSController &) 184

174425 Ctlir()const e 185

17.44.2.6 Disconnect() o e e 185

17.44.2.7 Open() const 185

17.44.2.8 operator==(IMSSystem const &rhs) const 185

17.44.2.9 Synth(const IMSSynthesiser &) oL 185
17.44.210Synth() const e 186
17.45IMS::kHz Class Reference o o e 186
17.45.1 Detailed Description 187
17.45.2 Constructor & Destructor Documentation 187
17.45.2.1 kHz(double arg) 187

17.45.3 Member Function Documentation o 187
17.45.3.1 operator double() const 187

17.45.3.2 operator=(double arg) L 188
17.46iMS::LibVersion Class Reference o 188
17.46.1 Detailed Description 188
17.46.2 Member Function Documentation 189
17.46.2.1 GetMajor() e 189

17.46.2.2 GetMinor() o 189

17.46.23 GetPatch() 189

17.46.2.4 GetVersion() 190

17.46.2.5 HasFeature(const std::string &name)o 190

17.46.2.6 IsAtLeast(int major, int minor, intpatch) 190
17.47iIMS::ListBase< T > Class Template Reference 191
17.47.1 Detailed Description e e 192
17.47.2 Member Function Documentation L 193
17.47.2.1 assign(size_tn,const T &val) 193

174722 begin() 193

17.47.23 begin() const L 193

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS xvii
17.47.2.4 cbegin()const 193
17.47.25 cend() coOnst L e 193
17.47.26 clear() o e 193
17.47.2.7 empty() const 194
174728 end() o o 194
17.47.29 end() const L e e e 194
17.47.2.10erase(iterator position)o 194
17.47.2.11erase(iterator first, iteratorlast) 194
17.47.212GetUUID() const L L 195
17.47.2.13nsert(iterator position,const T&val)o 195
17.47.2.14insert(iterator position, const_iterator first, const_iteratorlast) 195
17.47.2.1ModifiedTime() const L 196
17.47.2.18ModifiedTimeFormat() const 196
17.47.217Name() CONSt L e e 196
17.47.2.18perator==(ListBase const &rhs) const 196
17.47.21%0p_back() 196
17.47.22000p_front() 196
17.47.2.21push_back(const T &val) o 197
17.47.2.22ush_front(const T &val) 197
17.47.2.23esize(Size_tn) e 197
17.47.2.245ize() CONSt o o e 197

17.48iMS::MHz Class Reference e 197
17.48.1 Detailed Description 198
17.48.2 Constructor & Destructor Documentation 199

17.48.2.1 MHz(double arg) e 199
17.48.3 Member Function Documentation 199
17.48.3.1 operator double() const 199
17.48.3.2 operator=(double arg) 199
17.48.3.3 RenderAsimagePoint(const IMSSystem &, constMHz) 200

17.49iMS::Percent Class Reference e 200
17.49.1 Detailed Description 200
17.49.2 Constructor & Destructor Documentation 201

17.49.2.1 Percent() o e e 201
17.49.2.2 Percent(double arg) e 201
17.49.3 Member Function Documentation 201
17.49.3.1 operator double() const 201
17.49.3.2 operator=(double arg) 201
17.49.3.3 RenderAsCalibrationTone(const IMSSystem &, const Percent) 202
17.49.3.4 RenderAsCompensationPoint(const IMSSystem &, const Percent) 202
17.49.3.5 RenderAsimagePoint(const IMSSystem &, const Percent) 202

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

xviii CONTENTS

17.50iMS::ImagePlayer::PlayConfiguration Struct Reference 202
17.50.1 Detailed Description 203
17.51iIMS::RFChannel Class Reference 203
17.51.1 Detailed Description 204
17.51.2 Constructor & Destructor Documentation 204
17.51.2.1 RFChannel() 204

17.51.2.2 RFChannel(intarg) 204

17.51.3 Member Function Documentation 205
17.51.3.1 operatorint() const 205

17.51.3.2 operator++() o e e 205

17.51.3.3 operator=(intarg) e 205
17.52iMS::SequenceManager::SeqConfiguration Struct Reference 206
17.52.1 Detailed Description e 206
17.53iMS::SequenceDownload Class Reference 206
17.53.1 Detailed Description 207
17.53.2 Constructor & Destructor Documentation. 207
17.53.2.1 SequenceDownload(IMSSystem &ims, const ImageSequence &seq) 207

17.53.3 Member Function Documentation L 208
17.53.3.1 Download() o e 208
17.54iMS::SequenceEvents Class Reference oo 208
17.54.1 Detailed Description L 208
17.54.2 Member Enumeration Documentation Lo o 208
175421 Events L 208
17.55iMS::SequenceManager Class Reference o oo 209
17.55.1 Detailed Description e 211
17.55.2 Constructor & Destructor Documentation 211
17.55.2.1 SequenceManager(const IMSSystem &) 211

17.55.3 Member Function Documentation 211
17.55.3.1 GetSequenceUUID(int index, std::array< std::uint8_t, 16 > &uuid) 211

17.55.3.2 QueueClear() 211

17.55.3.3 QueueCount() L 211

17.55.3.4 RemoveSequence(const ImageSequence &seq) 212

17.55.3.5 RemoveSequence(const std::array< std::uint8_t, 16 > &uuid) 212

17.55.3.6 SequenceEventSubscribe(const int message, |IEventHandler «handler) 212

17.55.3.7 SequenceEventUnsubscribe(const int message, const IEventHandler «xhandler) . 213

17.55.3.8 StartSequenceQueue(const SeqConfiguration &cfg=SeqConfiguration(),
ImageTrigger start_trig=ImageTrigger::CONTINUOUS) 213

17.55.3.9 UpdateTermination(ImageSequence &seq, SequenceTermAction action, int val=0) 213

17.55.3.10Update Termination(const std::array< std::uint8_t, 16 > &uuid, SequenceTerm«
Action action, intval=0) 214

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS Xix

17.56iMS::SignalPath Class Reference 214
17.56.1 Detailed Description e 216
17.56.2 Member Enumeration Documentation L L. 217

17.56.2.1 AmplitudeControl L 217
17.56.2.2 Compensation 217
17.56.2.3 ENCODER_CHANNEL 217
17.56.2.4 ENCODER_MODE e 218
17.56.2.5 SYNC_SINK e 218
17.56.2.6 SYNC_SRC e 218
17.56.2.7 ToneBufferControl 218
17.56.2.8 VELOCITY_MODE e e e 219
17.56.3 Constructor & Destructor Documentation 219
17.56.3.1 SignalPath(const IMSSystem &ims) 219
17.56.4 Member Function Documentation 219
17.56.4.1 AssignSynchronousOutput(const SYNC_SINK &sink, const SYNC_SRC &src)
CONSE . . . o e e 219
17.56.4.2 ClearTone() o o i i 219

17.56.4.3 ConfigureSyncDigitalOutput(::std::chrono::nanoseconds delay=::std::.chrono«
::nanoseconds::zero(),::std::chrono::nanoseconds pulse_length=::std::chrono«

znanoseconds:izero() e e e e e e e e e e 220
17.56.4.4 DisableEncoder() 220
17.56.4.5 EnablelmagePathCompensation(SignalPath::Compensation amplComp, Signal«

Path::Compensation phaseComp) 220
17.56.4.6 EnableXYPhaseCompensation(bool XYCompEnable) 221
17.56.4.7 ReportEncoderVelocity(ENCODER_CHANNEL chan) 221
17.56.4.8 SetCalibrationTone(const FAP &fap) 221
17.56.4.9 SetChannelReversal(boolreversal) 222
17.56.4.10SignalPathEventSubscribe(const int message, |IEventHandler xhandler) 222

17.56.4.11SignalPathEventUnsubscribe(const int message, const IEventHandler «xhandler) 222

17.56.4.125witchRFAmplitudeControlSource(const AmplitudeControl src) 223
17.56.4.13UpdateDDSPowerLevel(const Percent &power) 223
17.56.4.14UpdateEncoder(const VelocityConfiguration &velcomp) 223

17.56.4.189JpdateLocalToneBuffer(const ToneBufferControl &tbc, const unsigned int index,
const SignalPath::Compensation AmplitudeComp=SignalPath::Compensation«
=ACTIVE, const SignalPath::Compensation PhaseComp=SignalPath::+

Compensation::ACTIVE) o 224
17.56.4.168UpdateLocalToneBuffer(const ToneBufferControl &tbc) 224
17.56.4.17UpdateLocalToneBuffer(const SignalPath::Compensation AmplitudeComp, const

SignalPath::Compensation PhaseComp) 224
17.56.4.18UpdateLocalToneBuffer(const unsigned intindex) 225
17.56.4.19pdatePhaseTuning(const RFChannel &channel, const Degrees &phase) 225
17.56.4.20UpdateRFAmplitude(const AmplitudeControl src, const Percent &l) 225

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

XX CONTENTS

17.57iMS::SignalPathEvents Class Reference 225
17.57.1 Detailed Description 226
17.57.2 Member Enumeration Documentation L L. 226

17.57.21 BEvents e 226

17.58iMS::StartupConfiguration Struct Reference Lo oo 226
17.58.1 Detailed Description 228

17.59iMS::SystemFunc Class Reference 229
17.59.1 Detailed Description 231
17.59.2 Member Enumeration Documentation oo o 231

17.59.2.1 NHFLocalReset 231
17.59.2.2 PLLLockReference L 232
17.59.2.3 PLLLockStatus 232
17.59.2.4 TemperatureSensor o i e 232
17.59.2.5 UpdateClockSource e 233
17.59.3 Constructor & Destructor Documentation. 233
17.59.3.1 SystemFunc(const IMSSystem &ims) oL 233
17.59.4 Member Function Documentation 233
17.59.4.1 ConfigureNHF(bool Enabled, int milliSeconds, NHFLocalResetreset) 233
17.59.4.2 EnableAmplifier(boolen) 233
17.59.4.3 EnableExternal(boolenable) Lo 234
17.59.4.4 EnableRFChannels(bool chan1_2,boolchan3_4) 234
17.59.4.5 GetClockReferenceFrequency() oo oo 234
17.59.4.6 GetClockReferenceMode() e 235
17.59.4.7 GetClockReferenceStatus() oo 235
17.59.4.8 ReadSystemTemperature(SystemFunc::TemperatureSensor sensor) 235

17.59.4.9 SetClockReferenceMode(SystemFunc::PLLLockReference mode, kHz External«

FixedFreg=kHz(1000.0)) o 235
17.59.4.10SetDDSUpdateClockSource(UpdateClockSource src=UpdateClockSource::IN«

TERNAL) o 236
17.59.4.11StoreStartupConfig(const StartupConfiguration &cfg) 236
17.59.4.125ystemFuncEventSubscribe(const int message, |IEventHandler xhandler) 237

17.59.4.13SystemFuncEventUnsubscribe(const int message, const IEventHandler xhandler) 237

17.60iMS::SystemFuncEvents Class Reference 237
17.60.1 Detailed Description L 238
17.60.2 Member Enumeration Documentation L L oL 238

17.60.2.1 Events 238

17.61iMS::ToneBuffer Class Reference 238
17.61.1 Detailed Description 240
17.61.2 Constructor & Destructor Documentation., 240

17.61.2.1 ToneBuffer(const std::string &name=""") 240

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS XXi

17.61.2.2 ToneBuffer(const TBEntry &tbe, const std::string &name=""") 240
17.61.2.3 ToneBuffer(const int entry, const std::string &name=""") 240
17.61.3 Member Function Documentation 241
17.61.3.1 begin() 241
17.61.3.2 begin() const L e 241
17.61.3.3 cbegin()const L 241
17.61.3.4 cend() const e 241
1761.35end() . - 242
17.61.3.6 end() const e 242
17.61.3.7 Name() const e 242
17.61.3.8 operator==(ToneBuffer const &hs)const 242
17.61.3.9 operator[](std::size_tidx)const oL 243
17.61.3.100perator[](std::size_tidx)o 244
17.61.3.11Size() const 244
17.62iMS::ToneBufferDownload Class Reference 244
17.62.1 Detailed Description 246
17.62.2 Constructor & Destructor Documentation. 246
17.62.2.1 ToneBufferDownload(IMSSystem &ims, const ToneBuffer &tb) 246
17.62.3 Member Function Documentation L 246
17.62.3.1 GetVerifyError() 246
17.62.3.2 StartDownload() o e 247
17.62.3.3 StartDownload(ToneBuffer::const_iterator first, ToneBuffer::const_iterator last) . . 247
17.62.3.4 StartDownload(ToneBuffer::const_iteratorsingle) 247
17.62.3.5 StartVerify() o 247

17.62.3.6 Store(const std::string &FileName, FileDefault def=FileDefault::NON_DEFAULT)
CONSE e e e e 247

17.62.3.7 ToneBufferDownloadEventSubscribe(const int message, |IEventHandler xhandler) 248

17.62.3.8 ToneBufferDownloadEventUnsubscribe(const int message, const IEventHandler

khandler) L 248
17.63iMS::ToneBufferEvents Class Reference o 249
17.63.1 Detailed Description 249
17.63.2 Member Enumeration Documentation L L oo 249
17.63.2.1 Events e e e 249
17.64iMS::ToneBufferList Class Reference L 249
17.64.1 Detailed Description e 250
17.65iIMS::UserFileReader Class Reference 250
17.65.1 Detailed Description e 251
17.65.2 Constructor & Destructor Documentation 251
17.65.2.1 UserFileReader(const IMSSystem &ims, const FileSystemIndex index) 251

17.65.2.2 UserFileReader(const IMSSystem &ims, const std::string &FileName) 251

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

xXii CONTENTS

17.65.3 Member Function Documentation 252
17.65.3.1 Readback(std::vector< std::uint8_ t >&data) 252
17.66iMS::UserFileWriter Class Reference 252
17.66.1 Detailed Description L 253
17.66.2 Constructor & Destructor Documentation. 253

17.66.2.1 UserFileWriter(IMSSystem &ims, const std::ivector< std::uint8_t > &file_data,

const std::string file_name)o Lo 253

17.66.3 Member Function Documentation 253

17.66.3.1 Program() 253

17.67iMS::VelocityConfiguration Struct Reference o o 0. 254

17.67.1 Detailed Description L 255

17.67.2 Member Function Documentation 255
17.67.2.1 SetVelGain(const IMSSystem &ims, SignalPath::ENCODER_CHANNEL chan,

kHz EncoderFreq, MHz DesiredFregDeviation, bool Reverse=false) 255

18 File Documentation 257

18.1 Auxiliary.h File Reference 257

18.1.1 Detailed Description e 258

18.2 Compensation.h File Reference 259

18.2.1 Detailed Description 260

18.3 ConnectionList.h File Reference 261

18.3.1 Detailed Description 262

18.4 Containers.h File Reference 262

18.4.1 Detailed Description 263

18.5 Diagnostics.h File Reference 264

18.5.1 Detailed Description e 264

18.6 FileSystem.h File Reference e 265

18.6.1 Detailed Description L 267

18.7 IBulkTransfer.h File Reference 268

18.7.1 Detailed Description 269

18.8 IEventHandler.h File Reference 269

18.8.1 Detailed Description 270

18.9 Image.h File Reference 270

18.9.1 Detailed Description 272

18.10lmageOps.h File Reference 272

18.10.1 Detailed Description e 273

18.11ImageProject.h File Reference 274

18.11.1 Detailed Description e 275

18.12IMSSystem.h File Reference 275

18.12.1 Detailed Description e e 276

18.13IMSTypeDefs.h File Reference 277

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

CONTENTS xXxiii

18.13.1 Detailed Description e 278
18.14LibVersion.h File Reference 278
18.14.1 Detailed Description e 279
18.14.2 Macro Definition Documentation 279
18.14.2.1 IMS_API_MAJOR e 279

18.14.2.2 IMS_APL_MINOR e 279

18.14.2.3 IMS_API_PATCH 279
18.15SignalPath.h File Reference 280
18.15.1 Detailed Description 281
18.16SystemFunc.h File Reference 281
18.16.1 Detailed Description 282
18.17ToneBuffer.h File Reference 282
18.17.1 Detailed Description 283
Index 285

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 1

iMS Library and APl Documentation

1.1 Contents

+ Overview

* What's Included

+ Platform

 Software Library Architecture

« .NET Wrapper

» Python Wrapper

+ iIMS Hardware Server

+ iMS Studio

« Tutorial 1(a): Setting up a project and connecting to an iMS
« Tutorial 1(b): Programming and Playing an Image

+ Tutorial 2: Using the API Message Handling System
* Glossary

* Release Notes

1.2 Overview

The iIMS (Isomet Modular Synthesiser) System represents an expansive range of hardware devices and software
interfaces designed to permit the rapid development and integration of Acousto-Optic (AQO) technology into end-user
systems.

By modularising the hardware components and supplying a well defined application interface, the systems integra-
tor only needs to specify the required iMS hardware configuration, select an RF amplifier and AO device, and begin
writing application software at a high level of abstraction. All the fundamental details of underlying host commu-
nications protocols and I/O data formats are handled internally by the software leaving you to concentrate on the
elements of the design that matter to your application.

Application software communicates with the iMS System through the Application Programmer's Interface (AP«
1) which is supplied by Isomet along with compiled library objects for a number of different platforms, documentation
and examples as part of the iMS Software Development Kit (SDK). The API can also be used without accompanying
iIMS hardware to develop applications that create iMS compatible data such as Image Files and Compensation
Tables.

2 iMS Library and API Documentation

In addition to the API and accompanying C++ library, the SDK also includes software utilities and script wrappers
that allow you to get up and running quickly without having to write any software at all, or to set up complex tasks
using a few simple scripting commands.

This documentation covers all of the files, classes and other constructs made available to the application program-
mer through the API. It also provides some background detail on the key concepts and software architecture of the
library to help facilitate understanding.

There are numerous code examples given throughout the documentation to explain how to perform particular oper-
ations. You are allowed and encouraged to copy these examples as a basis for developing your own applications.

1.3 What's Included

The core of the Software Development Kit is the C++ iMS library and API. All interaction with iMS hardware ultimately
passes through this API. However we have also provided a number of other software utilities and wrappers that allow
you to use the iIMS System at a higher level of abstraction.

Included in the SDK are:

The core iMSLibrary binaries for a number of different platforms and toolsets.
» Accompanying C++ header files for application interface

+ iIMSNET An experimental .NET assembly written in C# that wraps the core library and permits user applica-
tion development in any .NET language targetting the .NET Framework

» ims_hw_server is a command line daemon type process that can handle all communication with an iMS
system, decoupling it from user application business logic. A gRPC streaming interface connects the server
to application software, either on the same host or across a network.

+ iMS Studio is a full featured GUI front end application that can be used to create Images, Tone Buffers and
Compensation Functions and play them on an iMS system. This is often a good starting point for users
wishing to explore the capabilities of an iMS before starting development of custom software.

1.3.1 Application Programmer's Interface

For full control of an iIMS System, we encourage users to develop their software applications in C++ using the iMS
defined API and linked against the supplied library files. The libraries are extensively used and tested and provide
access to every available feature on the hardware.

Every class and function in the APl is documented within this documentation set and Isomet are happy to assist
your development through examples, walkthroughs and design assistance or consultancy.

1.3.2 .NET Wrapper

A .NET wrapper (iIMSNET.dIl) is supplied that encapsulates the C++ binaries and provides access to nearly all
functionality in a convenient format for development of .NET graphical applications on Microsoft Windows.

Most classes and functions exposed through the .NET wrapper have the same or similar naming and functionality
to those presented by the C++ library .dll although there are some differences to both.

At present, support for iMS application development using the .NET wrapper library is good but experimental and
documentation is limited. See, however .NET Wrapper

1.4 Platform

The iMS software library and API has been written purely in native ANSI-C++ with some use of features introduced
in C++11 (ISO/IEC 14882:2011), including the C++ Standard Library. There is no use of features associated with

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

1.4 Platform 3

the updated C++14 or later specifications.

There are no dependencies on external dynamic libraries other than those supplied as part of a normal OS distri-
bution.

The compiled library code is currently supplied as a Windows-only .dIl dynamic library. It is sufficient in your appli-
cation development to reference the accompanying .lib file in your linker script and ensure that the .dll can be found
by the executable at run-time either by placing it in the same location or at a location discoverable in the %Path%
environment variable. A walkthrough of this process is given in the SDK tutorials.

The library has been compiled and released using Microsoft Visual Studio 2013 (v120), 2015 (v140) and 2017
(v150) for Windows 7 Professional 32-bit and 64-bit and also using Microsoft Visual Studio 2015 (v140) and 2017
(v150) for Windows 10 32-bit and 64-bit. We do not recommend using earlier versions of Visual Studio as we cannot
guarantee their usage and we explicitly do not support earlier versions of Microsoft Windows (Vista/XP/2000 and
earlier). You may use alternative IDE development tools at your own risk although if you contact us we may be able
to assist with any issues discovered. Windows 8/8.1 support is believed to work but is unverified.

Visual Studio 2013 Visual Studio 2015 Visual Studio 2017 Qe 4 7 3

(v120) (v140) (v141)
32-bit 64-bit 32-bit 64-bit 32-bit 64-bit X86 | armle-v7

Microsoft
Windows {
2000/XP/Vist x x
a or earlier
Microsoft
Windows 7
Professional
Microsoft
Windows
8/8.1
Microsoft
Windows 10
Professional
QNX Neutrino
6.6

X P S
B

Table 1 Toolset Version Compatibility Table

Cross-platform support for other OSes is underway. Support for the QNX Neutrino 6.6 RTOS is available.

Included in the SDK are .dlI's for 32-bit and 64-bit applications along with standard (release mode) libraries for your
application deployment and debug libraries (suffix _dbg.dll) for your own development.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

iMS Library and API Documentation

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 2

Software Library Architecture

2.1 Software Library Architecture

Figure 1 below provides a conceptual view of the architecture of the iMS Software Library. It does not represent
a structured class diagram of the internal library detail but should give an initial feeling for how the library is con-
structed.

iMS Software Library Architecture.png

AR

|EventHandler

Features |

- =

o o Lo
o 'I_-T:i = o o ==
22 BB = | & a L
o° 21 &8 |w |5 2 o o o
E E|lE|5 |5 || 2|22 EE
O ol |@|&|o |8 |Eo =

|BulkTransfer IBulkTransfer
| IMSTypeDefs
IMS Connection List . .
Sy stem | LibVersion

Figure 2.1: (Figure 1) Library Architecture Overview

6 Software Library Architecture

2.1.1 Connection List and IMS System

These two modules represent the lowest layer of communications with the iIMS hardware present in the library.
ConnectionList maintains an internal knowledge of how to interact with the hardware across all supported connec-
tion types. This is abstracted so that other parts of the library can communicate with the hardware irrespective of
the connected interface.

IMSSystem maintains a working knowledge of the capabilities, configuration and detail of the connected system
so that both the application and internal library elements can determine what it can and cannot do and how to
reinterpret data in a format that is suited to the hardware.

2.1.2 Features

The features are a suite of functional blocks that are a bit like the library books of the library. Each knows how to
perform a particular function that is associated with the overall iMS functionality.
* Compensation : functions for storing and downloading amplitude, phase and synchronous data tables

* Auxiliary : functions for additional features that are not associated with the core RF synthesis and output
capabilities, e.g. GPIO

» Signal Path : functions for controlling the RF signal path, including fixed tone calibration modes
* System Functions : functions for enabling and controlling system and communications features
* FileSystem: functions for writing and reading non-volatile memory

* Diagnostics : functions for monitoring system status, e.g. temperature, VSWR and current draw

* Image Operations : functions for downloading images, image sequences and configuring, starting and
stopping playback

2.1.3 Compensation Tables

iIMS Synthesisers contain a set of frequency-addressed look-up tables for applying various compensations to the
RF signal output. The tables are indexed by the nearest programmed frequency to the current frequency being out-
put by that RF channel. Table entries are linearly spaced in frequency starting from the lowest frequency supported
by that Synthesiser up to the highest frequency supported. The number of entries in the table is hardware specific.

Compensations available include:

« Amplitude: a value between 0 and 100% for modifying the output amplitude according to frequency. Used for
compensating for AOD efficiency as well as filter attenuation and DDS roll-off.

» Phase: 0 - 360 degrees. Represents the per-channel phase difference applied to enable beam steered
applications. Value represents the amount of additional phase applied from the previous channel to this one
(channel 1 is unmodified).

» Sync Analog: A value between 0.0 and 1.0 that can be output on one of the synchronous DAC outputs
(updated in step with the RF image point data).

» Sync Digital: A binary value that can be output on the synchronous digital outputs (updated in step with the
RF image point data).

2.1.4 Images/Image Files

This set of classes are used for creating the core RF image data that is at the heart of the Isomet iMS concept. An
Image File can contain one or more iMS images plus a sequence table that defines the default order for playing back
images, the conditions for triggering images, numbers of repeats, image point rate, delays and other vital data. An
image itself is composed of image points (from 1 up to many millions), each point consisting of up to 4 RF channels
with independent specification of frequency, amplitude and phase and optional synchronous output data.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

2.1 Software Library Architecture 7

2.1.5 Utilities

Additional Utility functions exist for supplying the version information for the API (LibVersion) and useful type def-
initions for frequency (in kHz and MHz), amplitude (as a percentage) and phase (degrees from 0 to 360) amonst
others.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Software Library Architecture

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 3

Cross Language Support and Scripting Wrappers

We recognise that not all users prefer to develop their applications in C++ and for convenience we also supply a
number of wrappers and support libraries for writing software in alternative languages including scripting languages.

3.1 .NET Wrapper

The .NET library iMSNET.dIl wraps around the C++ library, exposing many of the same functions or providing a
thin layer to translate C++ concepts such as std::list into .NET compatible frameworks such as IEnumerable. Most
classes and functions are recognisable from the C++ API| documentation - one noticeable exception is the Image
class which is renamed iMSImage to avoid confusion with the .NET entity System.Image. Just as with the C++
library, all classes and functions are contained within the same namespace iMS.

3.1.1 Initialisation

One very important point of note when using the .NET library is that is must be explicitly initialised before first using
the library within your application. So within the application's startup routine, you must call the function:

iMSNET.Init ();

3.1.2 Concepts

Most concepts familiar to .NET programmers can be applied to code written against the iMSNET library. For exam-
ple, to iterate through all the ImagePoint's in an Image, in C++ one might write the code

iMS::Image img (500, iMS::ImagePoint());

f (iMS::Image.iterator it = img.first(); it != img.end(); ++it) {
/] ...

}

In C#, the iMSImage class implements IEnumerable, so one could instead write:

iMS.iMSImage img = new iMS.iMSImage (500, new iMS.ImagePoint());
foreach (var pt in img) {

/] ...

}

3.1.3 WPF and INotifyPropertyChanged

Classes ImagePoint, CompensationPoint and TBEntry all implement the INotifyPropertyChanged interface which is
a key concept in WPF (Windows Presentation Foundation) and UWP (Universal Windows Platform) applications.
As a result, they may all be used directly within ViewModels where the MVVM design pattern is being used.

10 Cross Language Support and Scripting Wrappers

3.1.4 More Information

For further information, we recommend creating a new .NET project in Visual Studio, adding the iMSNET.AII library
as an assembly reference and using the Object Browser to examine all of the available classes and functions,
comparing them with the C++ documentation.

3.2 Python Wrapper

We are planning to develop and release a wrapper for the C++ library in the Python scripting language to allow
users to create their own iMS compatible .py scripts. At present, this is not yet complete but we welcome feedback
from users on the usefulness of this feature or whether other scripting languages (e.g. Perl, TCL) would be handy.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 4

Utilities: iMS Hardware Server

4.1 iMS Hardware Server

Although the core of the SDK is the C++ library and API upon which all applications can be built, we also supply a
number of software utilities to assist you in your usage of an iMS System.

The first of these is a command line application called 'ims_hw_server' which runs as a background process in a
command window.

ims_hw_server is built upon the C++ API hardware layer and abstracts away some of the requirements of the C++
library to offer a simplified model for performing routine tasks with iMS System hardware. It operates as a client-
server model exposing a set of services to the client over a TCP/IP socket using Google's Remote Procedure Call
protocol: gRPC

Source code that implements the server API for developing client applications is provided as part of the SDK and
full documentation for the server can be found here:

iMS HW Server Documentation

Note

The Server listens on TCP port 28241. You may be required to enable access on this port through Windows
Firewall or other Firewall software or hardware

http://www.grpc.io
../../utils/ims_hw_server/doc/html/index.html

12 Utilities: iMS Hardware Server

B YswAD9-Isomet\iMS_SDEIms_hw_server\bin\ims_hw_server.exe | SRR X

iM% Hardware Server 1.1.37

m 2017 Isomet C(UK» Limited. All Rights Reserved.

Server listening on B.A.8.0:28241

fcan returned 1 suystems.

Connected to iM% System iMSPHA1UH

cet DDE Power: DDS<25x> Wiper 1<58> Wiper 2{58> Src=UIPER_1i

Master Switch Enable: Amplifier<Diszahle)> RF Channel 1-2(Diszabhle? RF Channel 3-4¢

Dizable? External Eqt<(Dizablel
Suynchronous Output Mapping: ImagefAnalogA <{==» Analogh
Synchronous OQutput Mapping: ImagefAnalogB <==>* AnalogB
Suynchronous Output Mapping: ImageDigital {==» Digital
DDE Power: DDS<{25x> Wiper 1<58> Wiper 2{58> Src=UIPER_1i
DDS Pou DDS (25 Wiper 1<(568> Wiper 2<58) Src=WIPER_1
DDE Pouwe DDSC25x> Wiper 1<58> Wiper 2<58> Src=WIPER_i1
DDE Powe DDS<{@x)> Wiper 1(5@> Wiper 2(58> Src=WIPER_1
DDE Power: DDECEx> UWiper 1<(58> Wiper 2(58> Src=0FF
Calibration Tone:=1BBMHz B8x BAdeg
Calibration Tone:-BMHz B8x Gdeqg

Clear Calibration Tone
DDE Power: DDS<1.56838:x> Wiper 1(58> Wiper 2<{58> Src=0FF
DDE Power: DDSC2.35257%)> Wiper 1{(58> Uiper 2{58> Src=0FF
DDE Power: DDS<3_13676x> Wiper 1(58> Wiper 2<{58> Src=0FF
DDE Power: DDSCB.6762%e+12x> Wiper 1{58> Wiper 2<{58> Src=0FF
DDE Power: DDS<{1688x> Wiper 1<58> UWiper 2{58> Src=0FF
DDS Power: DDS<18x> Wiper 1<58> Wiper 2¢58> Src=0FF

Image Download Mew Handle @

Image Download Finished?

Returning ImageTable with 1 entries

Starting Plavyhack

Image Plavback Started

Image Plavhack Finished

Figure 4.1: Example ims_hw_server Window

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 5

Utilities: iMS Studio

5.1 iMS Studio

iMS Studio is a Graphical IDE built upon the iIMSNET .Net wrapper and linking to the ims_hw_server application
for access to iMS hardware. It serves as a fully featured application for creating Images, Compensation Tables and
Tone Buffers, for managing ImageProjects and ImageGroups, for testing iIMS Systems and as a learning tool for
understanding how the iMS System is designed.

") Isomet iMS Studio v1.0.1.41 [Citemp\imgproj-biip] = | B |
File Edit Window Help
| TEE; @
mE DCL U, # . X, 0000
Project Explarer Image2 X Image3 Image0 Imaged Newlmage ImageFile [Sequence] Imagel Imaged Image) Compensation vExX @
ERgelGrodpsiizecimages i Amplitude Compensation g
4 Image File [6] = Chl Frequency (MHz) Chl Amplitude (%) Chl Phase (deg) Ch2 Frequency (MHz) | Ch2 Amplitude (%) | Ch2 Phase(d 00 Ef
Image 2 (1000 entriz) + g
11000 o » 90.1000 800000 720000 900000 800000 72000
mage 3 (1000 entries - o
Image 0 (1000 entries) 1 900100 79.9900 720360 900100 79.9900 7203 _ 807 2
@ &
Image 4 (1000 entries) z 80.0200 79.9800 72,0720 80.0200 79.9800 72070 o &
Newlmage (0 entries) |2 3 90.0300 799700 721080 90.0300 799700 72100 3 E
il [-sequance-] (3 antries) + 90,0400 79,9600 721480 90,0400 79,9600 7214 8 407 2
mage File 2 4] £ i
Image 1 (1000 entries) B 900500 79.9500 721800 900500 79.9500 72180 ¢ 0% g
S
Tmage 4 (1000 entries) 5 900600 79.9400 722160 900600 79.9400 7221 -
Image X {100 entries) 7 900700 79.9300 722520 900700 79.9300 7225 0= &
[--sequence--] (0 sntries) [90,0800 79.9200 722880 90,0800 79.9200 72281 ' ! - ! ‘ H
4 TestImage File [1] 90 79921 72 e 79.921 72 40 s 120 1.0 200 (%
-sequence--] (0 entries)] 500900 799100 723240 500900 799100 7232 Frequency (MHz) Y
10 501000 799000 723600 501000 799000 2360 g 3
(Compensation Funclions _____ ' |"'ny 90.1100 79.8000 723960 90.1100 79.8000 R on
Name Entrid _ [12 90.1200 79.8800 724320 90.1200 79.8800 7243 mpitdE - nese
Example Compensation Table 3 13 30.1300 798700 724680 30.1300 798700 72460 Analog LUT Digitsl LUT
Dave's Compensation Table 0) 5 . . 5 . 5
30.1400 79.8600 725040 30.1400 79.8600 7250 AOD Channel Pairs
R s 501500 72.8500 725400 501500 79.8500 7254
[R4 1 901600 79.8400 725760 901600 79.8400 7257 | [Synchronize Phase Steering
Tone Buffers) 501700 72.8300 726120 501700 72.8300 7261
LI N " Import / Export
Name 18 501800 72.8200 726480 501800 72.8200 72641
New Tone Buffer = o 50.1900 79.8100 726840 50.1900 79.8100 7268 | Import] [Export |
n on2nnn 708000 i1 anannn 728000 27
4 m
Number of Image Points: 1000 3 Default Internal Clock Rate (kHz): 250000 3 Default External Clock Divider: 17 [DOWNLOAD ‘
Hardware Console
Playing Image "Image 2°

Figure 5.1: Example iMS Studio Window

iMS Studio is built around a Docking Manager style GUI. The centre of the screen is the document pane where the
user can place Images, ImageSequences, CompensationTables and ToneBuffers. Around the edge of the window
the user can place tabs that perform a variety of different functions. These tabs can be pinned into place using the
drawing pin icon at the top right of the tab, removed with the little cross icon, auto-hidden to the side of the window,
or floated away from the main window completely. The application starts with a default layout, but do play around
with the tabs to arrange them in a style that suits your way of working.

In the default layout, the following tabs are visible:

+ Project Explorer. This displays all of the ImageGroups, Free Images, Compensation Functions and Tone
Buffers in an ImageProject and allows you to add and remove them. You can also drag Images between

14

Utilities: iMS Studio

Note

ImageGroups to move or copy them.

Hardware Console. The app launches the hardware server in the background and displays console output
in this window. If another server is found to be running on the system, the application will connect to that
instead and display a message in this window indicating the Process to which it is attached.

Compensation. This tab plots a graph of the Compensation Table that will be programmed into an iMS
System. The Compensation Table can be imported and exported to a file on the disk. Where a 4 channel
synthesiser is used for 2 channel pairs in a beam steered X/Y configuration, the 2 pairs can be synchronised
from here.

Signal Path. Allows the user to control the power setting of the RF signal outputs, as well as enabling /
disabling a connected amplifier and setting the Synchronous Data routing.

Calibration. This is used to enable the single tone mode used for AOD calibration. All 4 channels output the
same signal and no look-up compensation is applied.

Player Configuration. For playback of single Images, this tab controls the various options that are used
during the playback setup, for instance clock and trigger source, number of Image Repeats and whether
Compensation should be active or bypassed.

At the release date of SDK v1.3.0, ImageSequence playback has not yet been completed and has been
disabled. Also Compensation Tables can only be downloaded by importing from a disk Compensation file as
Compensation Table generation from a Compensation Function has not yet been completed.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 6

Tutorial 1(a): Setting up a project and connecting to
an iMS

6.1 Tutorial 1(a): Setting up a project and connecting to an iMS

This tutorial will demonstrate a simple example for creating a new software project in Visual Studio 2013/2015, how
to reference the API and write a simple application that connects to the iMS. In part (b) we extend the example to
play back an image that can be observed on a spectrum analyzer or oscilloscope.

6.1.1 Prerequisites

You will need to have available:
+ an iMS system with a synthesiser (e.g. iMS4) and a controller (e.g. iIMSL)
» a Windows PC with Visual Studio 2013 installed (Community edition is free of charge)
+ a copy of the iIMS SDK

6.1.2 Step1

Connect the iMS system to your PC's USB port. Apply power to the iMS.

Start up Visual Studio 2013. From the "Community 2013" window, press Start -> New Project... Expand the
Installed Templates to see under "Visual C++" -> "Win32" and select "Win32 Console Application"

16 Tutorial 1(a): Setting up a project and connecting to an iMS

P Recent NET Framework 4.5 - Sortby: Default

4 Installed . ~
onsole Application Visual C++ Visual C++

4 Templates A project for creating a Win32 console
application

Visual C++

I- Other Languages

Samples

I Online

MName: iMS_tutoriall

Location: \ten -

Solution name: iMS_tutoriall [w ate directory for solution
[[] Add to source control

Figure 6.1: New Project Wizard

Choose a location to suit you and give the project a name such as "iMS_tutorial1". Make sure the "Create a directory
for solution" box is checked.

6.1.3 Step2

In the Application Wizard that comes up, select "Next" (not "Finish") then ensure the box next to "Empty Project" is
checked. Click Finish.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

6.1 Tutorial 1(a): Setting up a project and connecting to an iMS

17

mrmy Application Settings

Overview Application type: Add common header files for:

- . () Windows application

Application Settings z
(%) Console application
[@]uln
() Static library

Additional options:

Empty project

Security Development Lifecyde (SDL)
checks

< Previous

Figure 6.2: Create Empty Project

6.1.4 Step3

Right click on "Header Files", select Add -> Existing ltem...

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Tutorial 1(a): Setting up a project and connecting to an iMS

EUILD

fa] Solution ‘i tutoriall' {1 project)
4[] iMS_tutoriall

¥ External Dependencies

=3 Header Files

®l Resource Fil

8§ Source Files

Properties

DEEUG TEAM

P Local Windows Debugger = Auto

v I x

TOOLS

TEST

Ctrl+Shift+X

orer View

Ctrl+C

Figure 6.3: Add Existing Item

Mew Filter

WIND

MNew Item...

isting Item...

HELP
Debug - Wi

Ctrl+Shift+A

Shift+Alt+A

then navigate to where you have downloaded the Isomet iMS SDK,; in the /include subdirectory and select all of the

header (x.h) files. Click "Add".

4 Add Existing Item - iMS_tu

Organize v New folder = O @
+ Mictosaft Vial st Name ’ Date modified Type Size
Projects | Compensation.h 04/1/20151141 HFile 6 KB
| ConnectionListh 03/1/20152201 HFile 3 KB
¢ Favorites | BulkTransferh 0411/201511:41 HFile 5KB
B Desktop |5 EventHandlerh 30/10/201516:44 HFile 2KB
% Downlozds | Imageh 30/10/20151644 HFile 1K8
] Recent Places | ImageOps.h 04/11/201511:06 HFile 5KB
| IMSSystem.h 30/10/201516:44 HFile 5KB
i Libraries | IMSTypeDefsh 30/10/201516:44 HFile 1K8
7 Documents] LibVersionh 03/11/20152200 HFile 6 KB
& Music _| SignalPath.h 30/10/201516:44 HFile 3KB
&) Pictures | SystemFunch 30/10/201516:44 HFile 3KB
=|| Subversion
B videos e
Filename: "Tmageh” "TmageOps.h’ “IMSSystem.h” ‘TMSTypeDefs.h’ "LibVersion.h” "SignalPath.h” "SystemFunc.h” " Compensationa” "Connectior = | All Fles () -

@ Q | » Computer » Local Disk (Y:) » sw » 09-Isomet » iMS_SDK » api_export » v100 » h - |

6.1.5 Step4

Right Click on "Source Files", select Add -> New ltem...

Figure 6.4: Add API Header files

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

6.1 Tutorial 1(a): Setting up a project and connecting to an iMS 19

A SignalPath.h

i SystemFunc.h

=5 Sourc- ™'

MNew Item... Ctrl+Shift+A

* — AT e Clhifde Y - - Ol
By Llassivizard.. Ctrl+Shift+X Existing Item... Shift+Alt+A

Scope to This Bl New Filter
MNew Solution Explorer View
Ctrl+X

Ctrl+C

Rename

Properties

Figure 6.5: Add New Source File

In the Add new item dialog box, select "C++ File (.cpp)" and click Add. You can call the source file anything you like,
but the default "Source.cpp" is fine.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

20 Tutorial 1(a): Setting up a project and connecting to an iMS

 Add New Item - iMS_t
4 Installed Sort by: Default

< inabieEs I__-, C++ File (.cpp) Visual C++ Type: Visual C++

Creates a file containing C++ source code

ﬁ_f, Header File (h) Visual C++

Property Sheets
Test

Graphics

b Online

Name: Source.cpp

Location: A\templ\iMS_tutoriall\iMS_tutorialll, -
b

Figure 6.6: Add New C++ File

6.1.6 Step5

The new source file will open in the main editor window in Visual Studio. Add the following code to get started:

// These are the API header files we will need in this tutorial
#include "ConnectionList.h"

#include "IMSSystem.h"

#include "SystemFunc.h"

#include "ImageOps.h"

#include "Compensation.h"

// These are the C++ standard library headers we will need
#include <cstdio>

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <thread>

#include <vector>

// A1l API classes are defined in the iMS namespace. For convenience, we can declare this here
using namespace iMS;

int main(int argc, charx argv)
{
// End application with success code
std::cout << "Press ENTER to finish";
std::cin.get ();
return 0;
}

6.1.7 Step6

We now have a blank source file to work in, but we need to configure Visual Studio to know how to compile against
the software library. Right click against the project name (iMS_tutorial1 - the line BELOW "Solution 'iMS_tutorial1™)
and select properties.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

6.1 Tutorial 1(a): Setting up a project and connecting to an iMS 21

cpp* | HIL BT
_tutoriall
Configuration: [Debug v Platiorm: [Active(Win32) v [Configuration Manager... |
b Common Properties Additional Include Directories [+
4 Configuration Properties Additional #using Directories <Edit.>
General Debug Information Format
! Debugging Common Lanauage RunTime _
: VC+~ Directories Consume | Additional Include Directories "
4 C/Cs+
B Suppress
=
® Eeneinl Warning L Ex][v]()
Optimization
B Treat Warr] 7
= Code Generation s
& Language
A main(Precompiled Headers
& - Output Files i
: Browse Information
B Build Dependencies o — 1 »
B
Al Options
Chrle Shift+X Eorinatad Inherited values:
Linker
Manifest Tool

Set as StartUp Project XML Document Generator,
Browse Information

Build Events

Custom Build Step

Code Analysis

Debug

v v v v v v v

Ctrl+ X

[#]Inherit from parent or project defaults
Additional Inc|
Specifies one

|path])

oK Cancel Appl

Figure 6.7: Additional Include Directories

Select "Configuration Properties -> C/C++ -> General" and next to "Additional Include Directories" click the arrow
to the right of the drop down box and "<Edit...>". Click the icon for "New Line" and the "..." button on the right to
bring up a "Select Directory" dialog box.

il Debug Information Format Program Database for Edit And Continue (/Z1)
ging Common Language RunTime Support
Directories Consume Windows Runtime Extensior] Additional Include Directories P R

Suppress Startup Banner
e Werning Level EXEE
AL Treat Warnings As Errars [-

: SDL checks |
de Generatio J

‘processor

'guage v Select Directory &J
«compiled H 3
tput Files @Uv\ » Computer » LocalDisk (Y) » sw » 09-somet » iMS_SDK b api_export » v1.0.0 » include .‘4,” T o
nwse Informal -
e Organize v New folder =- @
i il RecentPlaces = Name Date modified Type Size
mmand Ling]
o 4 Libraries No items match your search.
ocument Ga | Documents
< Information) Music
vents & Pictures
giuids=y | Subversion
Analysis H videos
™ Computer
R qytekdev (\bea =
&l Local Disk (C1)
- . a Local Disk (¥;)

Folder. h
ﬁ” Select Folder

Figure 6.8: Select Directory

Browse to the folder where the SDK header files were included (/include) and click Select Folder then "OK".

6.1.8 Step7

From the Property Pages, now expand "Linker -> General" and select "Additional Library Directories" and go
through the same process to add a reference to the SDK folder containing the 32-bit DLL (/lib/i386)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Tutorial 1(a): Setting up a project and connecting to an iMS

Configuration:

Debug

v | Platform: |Active(Win32)

General
Debugging

4 CfC++

General

Language

Advanced
All Options

4 Linker
General
Input

Debugging
System

Advanced
All Options

Optimization
Preprocessor

Manifest File

Optimization
Embedded IDL
Windows Metadata

b Commeon Properties
4 Configuration Properties

VIC++ Directories

Cemmand Line

Cemmand Line
b_Manifest Tool
m

Code Generation

Precompiled Heade
Output Files
Browse Information

3

m

Qutput File
Show Progress

Version

Enable Incremental Linking
Suppress Startup Banner
Ignare Import Library

Register Qutput
Per-user Redirection

Additional Library Directories
Link Library Dependencies
Use Library Dependency Inputs

Link Status

S(OutDir)S(TargetMame) $(TargetExt)
Mot Set

Yes (/INCREMENTAL)

Additional Library Directories

Prevent DIl Bindinf
Treat Linker Warni
Force File Qutput
Create Hot Patchd

’
4] Select Directory

@uv\ » Computer » LocalDisk(¥:) » sw b 09-lomet b iMSSDK » apiexport » v10O » lib » 386

Specify Section A

Additional Library Dif|
Allows the user to ow

Organize New folder

q Microsoft Visual St: Name Date modified Type Size

Projects No items match your search.
iT Favorites

Bl Desktop E

& Downloads

2] Recent Places

i Libraries

3 Documents
e

Figure 6.9: Select DLL Directory

In the Property Pages, navigate to "Linker -> Input" and click on the arrow next to "Additional Dependencies”
followed by "Edit...". In the text box type in "iMSLibrary_dbg.lib" This is a reference to the 32-bit debug mode DLL
which you can use for application development. Click OK then OK again to close the property pages.

5 o

.

Configuration: |Debug

orer

| Platform: |Active(Win32)

T

(c]

General
Debugging

n 'iMS

|_tuto
4 CfC++
General
Optimization
Preprocessor
Language

Output Files

Advanced
All Options

4 Linker

General
Input
Manifest File
Debugging
System
Optimization

ource

Advanced
All Optiens

4|

b Common Properties
4 Configuration Properties

VC++ Directories

Embedded IDL
Windows Metadata

Code Generation

Command Line

Command Line
& Manifest Tool
T

»

Precompiled Heade

Browse Information

m,

Additional Dependencies

kernel32.lib;user32.lib;gdi32.lib;winspoel.lib:comdlg32.lib;advapi

Ignore All Default Libraries
Ignore Specific Default Libraries

Medule Definition
Add Medule to As:

Embed Managed Resource File
Force Symbol References

Delay Loaded Dlls
Assembly Link Res

Additional Dependencies

Specifies additional ite

File
sembly

16l

iMSLibrary_dbg.lib| -

Additional Dependencies

ouUrce

4 3

Inherited values:

kernel32.lib -
user32lib
gdi32 lik
winspoollib
comdlg32.lib
advapi32.lib
shel32.lib
ole32.lib
oleaut3.lib

s Inherit from parent or project defaults

ms to add to the lin||

.

Figure 6.10: Additional Dependencies

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

6.1 Tutorial 1(a): Setting up a project and connecting to an iMS 23

6.1.9 Step8

The last step in setting up the project is in Windows Explorer to copy the .dll iMSLibrary_dbg.dll from /lib/i386 to the
project folder you created: (e.g. C:\temp\iMStutorial1\iMStutorial1). It should be in the same folder as the source
file Source.cpp.

6.1.10 Step9

Now we will add some code to search for an iMS System and try to connect to the first one that we find

In the main function, copy the following code and insert before the "return 0;" line:

// These two lines initialise the iMS Connection and scan the host for all connected iMS’s
ConnectionList % connList = new ConnectionList ();
std::vector<IMSSystem> fulliMSList = connList->scan();
IMSSystem myiMS;
(fulliMSList.size() > 0) {
// Get the first iMS that we find
myiMS = fulliMSList.front();
// and connect to it.
myiMS.Connect () ;
std::cout << "Connecting to IMS System on port: " << myiMS.ConnPort () << " ... ";
Lf (! (myiMS.Synth () .IsvValid()) || ! (myiMS.Ctlr().IsValid())) {
// There was a problem trying to initialise the iMS. We didn’t find a valid system.
std::cout << "FAILED!" << std::endl;
// Tidy up and return with a failure code
delete connList;
std::cout << "Press ENTER to finish";
std::cin.get ();
return -1;

// Everything OK.
std::cout << "SUCCESS!" << std::endl;

// All USER CODE goes here.

std::cout << "Press ENTER to finish";
std::cin.get ();

{
// There was a problem trying to discover an iMS. Check the USB connection and power.
std::cout << "No iMS Found." << std::endl;
// Tidy up and return with a failure code
delete connList;
std::cout << "Press ENTER to finish";
std::cin.get ();
~eturn -1;

}

// All done for now. Disconnect from the iMS and tidy up
myiMS.Disconnect () ;
delete connList;

urn 0;

This code will create a connection list (see ConnectionList.h) that knows how to communicate with an iMS system
on all supported connection types. We then ask the list to scan these connections to discover any iMS's connected
to the host. Any that it finds are returned in an array complete with all the information that we were able to find
out about them (configuration, model numbers, serial numbers etc). If none were found, the application aborts and
exits.

In this example, the first iMS in the array is connected to, but you could be more specific by interrogating the iMS's
serial numbers or other data - see the documentation for IMSSystem.h for more detail.

The application displays the message "Connecting to IMS System on port: " with a string descriptor of the connection
port, and tests that it has a valid connection with both a synthesiser and a controller. If not, it will abort and warn the
user.

You can run this application (press F5) and it should show the "Connecting" message then exit successfully. Your
first IMS application!

Continue to Tutorial 1(b): Programming and Playing an Image

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

24

Tutorial 1(a): Setting up a project and connecting to an iMS

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 7

Tutorial 1(b): Programming and Playing an Image

7.1 Tutorial 1(b): Programming and Playing an Image

In Tutorial 1(a): Setting up a project and connecting to an iMS you learnt how to set up an iMS project in Visual
Studio 2013 with the correct references to the iIMS API and library, and wrote a simple program that connected to
an iMS system. If you completed that tutorial successfully, you can now continue to create an example image and
watch it playing on the iMS RF output.

You will need:

+ to have successfully completed Tutorial 1(a): Setting up a project and connecting to an iMS

+ a spectrum analyser, oscilloscope or some other test equipment with a bandwidth of 100MHz or greater

This tutorial will illustrate two of the key concepts required to understand the operation of an iMS System: Compen-
sation Tables and Image Output.

7.1.1 Step 1: Creating & Downloading a Compensation Table

Compensation Tables provide the system designer with a method for adjusting RF drive signal output according
to frequency dependent effects in the output signal chain. They can also be used to generate analog and digital
outputs for system requirements that are linked to frequency output.

Each table consists of a look-up function of 2”*N entries (N can be read from iMS::IMSSynthesiser::Capabilities::+
LUTDepth). Each entry is linearly spaced from the lowest Frequency supported by the Synthesiser to the highest.

There are four tables: one for amplitude compensation, one for phase steering, one for analog system output and
one for digital system output.

For this example, we will create an amplitude table that steps down every 10MHz from 50MHz to 100MHz. This is
a contrived example that can act as a template for your own requirements.

In the source code that you created in part 1(a), insert the following code after the comment line "A11 USER
CODE goes here..."

// Check for the existence of a file containing LUT contents in the current working directory
CompensationTable table (myiMS) ;
std::ifstream f("tutoriall.lut");
(f.good()) |
f.close();
// Create a compensation table from the pre-existing file
CompensationTable new_table (myiMS, "tutoriall.lut");
table = new_table;
}
else {
f.close();
// Create a new compensation table with the amplitude initialised to 100% throughout
CompensationTable new_table (myiMS, CompensationPoint (Percent (100.0)));

26 Tutorial 1(b): Programming and Playing an Image

// For loop iterates through every frequency point in the look-up table, halving the
amplitude
// at each 10MHz step between 50 and 100MHz.
unsigned int index = 0;
f (CompensationTable::iterator pt = new_table.begin(); pt != new_table.end(); ++pt, index
++)
{
1f ((new_table.FrequencyAt (index)) > 90.0) {
pt->Amplitude (Percent (100.0 / 16.0));
}
else if ((new_table.FrequencyAt (index)) > 80.0) {
pt->Amplitude (Percent (100.0 / 8.0));
}
((new_table.FrequencyAt (index)) > 70.0) {
pt->Amplitude (Percent (100.0 / 4.0));

1 if ((new_table.FrequencyAt (index)) > 60.0) {
pt->Amplitude (Percent (100.0 / 2.0));
}
}
// Save table to disk so we don’t have to recreate it next time
new_table.Save ("tutoriall.lut");
table = new_table;
}

CompensationTableDownload tdl (myiMS, table);
tdl.StartDownload() ;

Here, the first line of code creates a new blank compensation table called 'table’. We then attempt to open a file
called tutoriall. lut which contains a previously generated copy of the look-up table. If the application finds
it, it will load the contents of the file instead of regenerating them.

If not, a second new table is created this time with the amplitude initialised to a default value of 100%. A for-loop uses
CompensationTable::iterator to address each of the points, determining their frequency and adjusting the amplitude
to create a 'stairstep’ effect at 10MHz intervals as the frequency rises from 50MHz to 100MHz

Once the table is complete, it is saved to disk to enable it to be recalled on the next program run.

The final two lines call the CompensationTable Downloader class, initialising it with the newly created table, then
start it downloading the table to the hardware.

7.12 Step 2: Creating & Downloading an Image

A primary feature of the iIMS System is its ability to store and playback one or more RF images. An RF image can
be downloaded to an iMS Controller and then played back under the control of an internal or externally supplied
clock, initiated by software or some external trigger signal. Each image contains a sequence of 'image points', from
just a few up to many millions. Each image point contains information for Frequency, Amplitude and Phase (known
as an 'FAP triad') for up to 4 RF channels plus some synchronous data that can be output externally to drive other
hardware in the system. Some Controllers support multiple images that can be arranged into complex sequences -
these are called 'image files.'

For this tutorial, we will generate a simple single 4096-point image which linearly ramps up from 50MHz to 100MHz
then loops around and repeats indefinitely. We will then play this back at a slow 1kHZ internal clock rate so that the
output ramp time is 4.1sec which can be observed on test equipment. It is a contrived example, barely useful in AO
equipment, but which serves to explain the fundamental principles.

Copy and paste the following source code after the code you added in part 1:

// Create the initial conditions:
// a default FAP triad, an empty image and the upper and lower frequency bounds
FAP fap (MHz (50.0), Percent (100.0), Degrees(0.0));
Image img;
MHz 1£(50.0);
MHz uf (100.0);

// Loop through appending 4096 points increasing linearly in frequency
for (int i = 0; 1 <= 4095; i++)
{
// linear ramp
fap.freq = 1f + (uf - 1f) * ((double)i / 4096.0);
img.AddPoint (ImagePoint (fap));
}
// Set Internal Clock rate for 4.lsec ramp time
img.ClockRate (kHz (1.0));

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

7.1 Tutorial 1(b): Programming and Playing an Image 27

// Clear any leftover image playback to permit download
ImagePlayer ForceStop (myiMS, img);
ForceStop.Stop (ImagePlayer: :StopStyle: :IMMEDIATELY) ;

// Create download object and initiate
ImageDownload idl (myiMS, img);
idl.StartDownload() ;

// Create image player object with post-delay and repeating continuously
ImagePlayer player (myiMS, img, ImagePlayer::PlayConfiguration (ImagePlayer::Repeats::FOREVER));
player.SetPostDelay (std::chrono::milliseconds (500));

std::cout << "Press ENTER to play" << std::endl;
std::cin.get ();
player.Play();

In the first few lines, an empty image is created along with a single FAP triad initialised to 50MHz, 100% amplitude
with no phase offset. the upper and lower bounds of the sweep are defined as 'If' and 'uf' MHz objects.

A for-loop is used to create the 4,096 image points that will make up the new image. First the frequency is set
according to its linear position in the ramp sweep. Then, a new image point is created from the FAP triad (the triad
is replicated across all 4 channels of the image point), and it is appended to the Image.

Finally, the image's default internal clock rate is declared to be 1kHz.
That's it - all that is required to create a simple image!

To use the image, it must be downloaded to the Controller then instructed to play back. Some Controllers do not
support simultaneous playback and download, so the next two lines create an ImagePlayer object that is just used
to send a Stop command to the hardware. The stop command is issued with a StopStyle::IMMEDIATELY property
to terminate any ongoing playback straightaway. If this wasn't used, the default behaviour would be to stop the
playback only after the final point in the image/

Following on from this, an ImageDownload object is created and initialised with the image we have just generated.
This uses the same large binary object mechanism (see BulkTransfer.h) as the Compensation Table downloader to
send the image to memory in the Controller.

Next, we create an ImagePlayer with its configuration initialised to repeat the image forever, until stopped on request
by software. We also want to add in a pause of half a second after each repeat so it is clear to the observer that the
image has completed.

The download and playback configuration done, we just await confirmation from the user before instructing the iMS
and its Image Player to begin playing.

7.1.3 Step 3: Observing the Output

Connect a spectrum analyser or oscilloscope to any of the RF outputs on the iMS System. You should observe the
following pattern:

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

28 Tutorial 1(b): Programming and Playing an Image
I ———— = P ————
Figure 7.1: Image Output observed on Spectrum Analyzer
Note

You may wonder whether the request for the user to press ENTER before playback is necessary. In fact, try
removing the std: : cin.get () line so that the example runs smoothly from image download into playback
without user input and you will find that playback may not start on some hardware configurations.

This is a consequence of the inability of some hardware to perform both image download and image playback
at the same time. The function call id1l.StartDownload () asks the Image Downloader to begin the
download process. In fact, the function spawns a thread in the background that performs the bulk download
of the image data, and returns immediately to user code. The API can trigger callbacks to the user application
that indicate when a download has started, finished and whether it was successful or failed. It can also perform
a post-download verify to check that the image contents were downloaded correctly. We will cover these in a
later tutorial when we look at the Message Handling system.

Because the background process is still downloading when the player.Play () function is called, the
ImagePlayer realises it cannot continue, and returns without beginning the image playback.

The Play () function returns t rue on a successful play attempt, so the simplest solution is to replace the
code line player.Play (); with while(!player.Play()); This will repeat the function call until it succeeds.
For a more elegant solution that doesn't block user code, see the future tutorial on Message Handling.

7.1.4 Full Tutorial 1 Code Listing

// These are the API header files we will need in this tutorial
#include "ConnectionList.h"

#include "IMSSystem.h"

#include "SystemFunc.h"

#include "ImageOps.h"

#include "Compensation.h"

// These are the C++ standard library headers we will need
#include <cstdio>

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <thread>

#include <vector>

// All API classes are defined in the iMS namespace. For convenience, we can declare this here
using namespace iMS;

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

7.1 Tutorial 1(b): Programming and Playing an Image

29

int main(int argc, charx argv)
{
// These two lines initialise the iMS Connection and scan the host for all connected iMS’s
ConnectionList % connList = new ConnectionList ();
std::vector<IMSSystem> fulliMSList = connList->scan();
IMSSystem myiMS;

if (fulliMSList.size() > 0) {
// Get the first iMS that we find
myiMS = fulliMSList.front();
// and connect to it.
myiMS.Connect () ;
std::cout << "Connecting to IMS System on port: " << myiMS.ConnPort () << " ... ";
Lf (! (myiMS.Synth () .IsValid()) || ! (myiMS.Ctlr().IsValid())) {
// There was a problem trying to initialise the iMS. We didn’t find a valid system.
std::cout << "FAILED!" << std::endl;
// Tidy up and return with a failure code
delete connList;
std::cout << "Press ENTER to finish";

// Everything OK.
std::cout << "SUCCESS!" << std::endl;

// Check for the existence of a file containing LUT contents in the current working directory
CompensationTable table (myiMS) ;
std::ifstream f("tutoriall.lut");
if (f.good()) |
f.close();
// Create a compensation table from the pre-existing file
CompensationTable new_table (myiMS, "tutoriall.lut");
table = new_table;

se {
f.close();
// Create a new compensation table with the amplitude initialised to 100% throughout
CompensationTable new_table (myiMS,
CompensationPoint (Percent (100.0)));
// For loop iterates through every frequency point in the look-up table, halving the
amplitude
// at each 10MHz step between 50 and 100MHz.
unsigned int index = 0;
for (CompensationTable::iterator pt = new_table.begin(); pt !=
new_table.end(); ++pt, index++)
{
1f ((new_table.FrequencyAt (index)) > 90.0) {
pt->Amplitude (Percent (100.0 / 16.0));

else 1f ((new_table.FrequencyAt (index)) > 80.0) {
pt->Amplitude (Percent (100.0 / 8.0));

else 1f ((new_table.FrequencyAt (index)) > 70.0) {
pt->Amplitude (Percent (100.0 / 4.0));

else f ((new_table.FrequencyAt (index)) > 60.0) {
pt->Amplitude (Percent (100.0 / 2.0));
}
}
// Save table to disk so we don’t have to recreate it next time
new_table.Save ("tutoriall.lut");
table = new_table;
}

CompensationTableDownload tdl (myiMS, table);
tdl.StartDownload() ;

// Create the initial conditions:

// a default FAP triad, an empty image and the upper and lower frequency bounds
FAP fap (MHz (50.0), Percent (100.0), Degrees(0.0));

Image img;

MHz 1£(50.0);

MHz uf (100.0);

// Loop through appending 4096 points increasing linearly in frequency
for (int 1 = 0; 1 <= 4095; i++)
{

// linear ramp

fap.freq = 1f + (uf - 1f) * ((double)i / 4096.0);

img.AddPoint (ImagePoint (fap));
}
// Set Internal Clock rate for 4.lsec ramp time
img.ClockRate (kHz (1.0));

// Clear any leftover image playback to permit download

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

30

Tutorial 1(b): Programming and Playing an Image

ImagePlayer ForceStop (myiMS, img);
ForceStop.Stop (ImagePlayer: :StopStyle: : IMMEDIATELY) ;

// Create download object and initiate
ImageDownload idl (myiMS, img);
idl.StartDownload() ;

// Create image player object with post-delay and repeating continuously

ImagePlayer player (myiMS, img, ImagePlayer::PlayConfiguration (
ImagePlayer: :Repeats: :FOREVER)) ;

player.SetPostDelay (std::chrono::milliseconds (500));

std::cout << "Press ENTER to play" << std::endl;
std::cin.get ();
player.Play();

std::cout << "Press ENTER to finish";
std::cin.get ();

}
else {
// There was a problem trying to discover an iMS. Check the USB connection and power.
std::cout << "No iMS Found." << std::endl;
// Tidy up and return with a failure code
delete connList;
std::cout << "Press ENTER to finish";
std::cin.get () ;
return -1;
}

// All done for now. Disconnect from the iMS and tidy up
myiMS.Disconnect () ;

delete connList;

return 0;

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 8

Tutorial 2: Using the APl Message Handling System

8.1 Tutorial 2: Using the APl Message Handling System

To Be Continued...

32

Tutorial 2: Using the APl Message Handling System

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 9

Glossary

9.1 Glossary

Description

FAP

A compound object containing a Frequency variable,
an Amplitude variable and a Phase variable

Image Point

Contains a description of the instantaneous output of
an iMS Synthesiser. It has 4 channels each
represented by a Frequency, Amplitude and Phase
triad.

Image

An Image stores a sequence of Image Points, from a
few to many million. An image can be stored in
Controller memory, uploaded and downloaded from
the host system. AO scan patterns are created by
playing back the image's point sequence under the
influence of an internal oscillator, or an externally
provided clock

Image Group

An Image group combines multiple Images and a
Sequence Table. It can be stored in Controller
memory (not supported by all Controllers), uploaded
and downloaded from the host system. Complex
sequences of AO scan patterns can be created by
indexing multiple Images using the Sequence Table
and/or host software interaction

Image Project

An Image Project stores multiple Image Groups,
Compensation Functions, Tone Buffers and Free
Images along with other useful metadata and is used
for saving iIMS data to host filesystems. Image
Projects cannot be downloaded to Controller
hardware

Sequence Table

A sequence table is associated with an Image File and
programs the Controller with the desired sequence in
which to play back multiple Images. The Sequence
Table can also program Image repeats, Image delays
and override default Image oscillator frequency

34

Glossary

Compensation Table

Compensation Tables are downloaded to the
Synthesiser for the purpose of providing Amplitude
Compensation (to counteract diffraction efficiency
effects and other RF signal path frequency
responses), Phase Steering (for Beam Steered
AODs) and Custom-mapped frequency-dependent
Synchronous Data outputs

Compensation Function

A Compensation Function is an abstraction of a
Compensation Table that allows full specification of
Compensation Table data from just a few Frequency
points. A Compensation Table can be derived from an
interpolation of data contained within a Compensation
Function

Triad

Another name for a FAP

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 10

Release Notes

10.1 vi1.4.2

(1st November 2017)

» (ADD) ConnectionList.h: Added config() and modules() methods to ConnectionList class to configure the
discovery process and limit its scope to improve scan time

* (ADD) SystemFunc.h: Added missing field XYCompEnable to StartupConfiguration struct

* (REMOVE) ConnectionList.h: Removed ConnectionTypesList typedef and associated connList private class
member plus iterators

» (BUGFIX) ImageProject.h: Fixed - v1.4.0 introduced a bug that would save MHz values as Hz values in .iip
and .xml Image Project save files.

10.2 vi.4.1

(6th October 2017)

» (ADD) SystemFunc.h: Added Master Reference Clock mode support
» (ADD) SystemFunc.h: Support for Master Reference clock programming into StartupConfiguration class
+ (ADD) Auxiliary.h: LED setting for PLL Lock Status

* (CHANGE) iMS4b Synthesiser frequency range now extends to 200.8MHz (previously limited to 196.6MHz).
Requires firmware build >=2.1.64

» (BUGFIX) ConnectionList.h: Corrected thread timeout bug in RS422 connection module that caused exces-
sive delay on calling ConnectionList::scan()

103 v1.4.0

(4th August 2017)

» (ADD) Auxiliary.h: Auxiliary::LED_SOURCE::OVERTEMP added to enable overtemperature LED configura-
tion

» (ADD) ConnectionList.h: Support for CM_ENET (Ethernet Interface) and CM_RS422 (Serial Interface)

+ (ADD) IMSSystem.h: Database updated with support for latest iMS4 Synthesiser H/W Revision

36

Release Notes

» (ADD) SystemFunc.h: Readback of iMS4 System Temperature
» (ADD) Message.h: Added MEMORY_TRANSFER_ERROR event

» (ADD) SignalPath.h: Support for Dual Optical Encoder inputs, tracking filter configuration and Velocity-«
Frequency Compensation

» (ADD) SignalPath.h: Synchronous Digital Output Data Configuration for delay time and pulse length

+ (ADD) IConnectionManager.h: Suffix to ConnString result: serial number now followed by ":" then string
indicating connection type

» (CHANGE) ConnectionList.h: Added a 1sec timeout to USB message transfer

* (CHANGE) Compensation.h: CompensationTable can now be loaded from a file that was generated for a
Synthesiser with a different operating frequency range. The table is interpolated using the nearest neighbour
algorithm.

104 v1.3.0

(16th February 2017)

» (ADD) Compensation.h: CompensationPointSpecification and CompensationFunction classes, removing the
unimplemented Compensation class in the process

» (ADD) Compensation.h: Explicit constructors for CompensationTable to allow it to be created without being
connected to an iMS System

+ (ADD) IMSSystem.h: Open() function to report on the status of a connection to an iIMS System
» (ADD) Image.h: Defined a new class ImageGroup to hold multiple Images and a single ImageSequence

+ (ADD) ImageProject.h: New class ImageProject to contain ImageGroup's, CompensationFunction's, Tone«
Buffer's and Free Image's as well as Load from / Save to disk

» (ADD) Containers.h: Most classes requiring a container now inherit from either ListBase or DequeBase
» (ADD) ImageOps.h: New Event IMAGE_DOWNLOAD_NEW_HANDLE reports the new Image Index handle

+ (ADD) SignalPath.h: Added the EnablelmagePathCompensation and EnableXYPhaseCompensation func-
tions.

+ (ADD) SignalPath.h: UpdateLocalToneBuffer now supports PhaseCompensation enable
+ (ADD) ToneBuffer.h: Added optional name string field to ToneBuffer class

+ (BUGFIX) CompensationTableDownload: Regular pause added in download process to allow buffers to flush
and ensure no data is lost due to buffer overruns

10.5 v1.2.6

(12th August 2016)

» (BUGFIX) Corrected a buffer overrun that sometimes occurred during the Image Download memory transfer.
The bug was most noticeable for small Images but in fact could randomly occur for any Image where the byte
size is not a multiple of 1024 (and particularly where the byte size modulo 1024 is small).

* (BUGFIX) Corrected the initialisation of a member variable in the ImagePlayer class that would cause a
phantom ImagePlayerEvents::POINT_PROGRESS Event to be triggered at the end of Image playback

» (BUGFIX) Const Correctness applied to GetSyncA(), SetSyncA(), GetSyncD() and SetSyncD().

» (BUGFIX) Added defaults for StartupConfiguration::SyncDigitalSource, StartupConfiguration::SyncAnalog«
ASource and StartupConfiguration::SyncAnalogBSource

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

10.6 v1.2.5 37

10.6 v1.25

(12th July 2016)

» (ADD) const overloads of begin() and end() members to enable range based for-loops on const objects for
CompensationTable, Image, ImageSequence, ImageTable and ToneBuffer classes

» (BUGFIX) added mutex lock around a member variable requiring thread synchronisation in the IMSSystem«
::Disconnect() method affecting iIMSP Controllers

» (BUGFIX) Modified ConnectionList::scan() method to terminate Serial Number string when encountering any
non-ASCIl value. Overcomes a bug in which some devices were incorrectly programmed without a null
terminator on the serial number stored in EEPROM.

10.7 vi.24

(18th May 2016)

* (CHANGE) ImageDownload support for Internal oscillator mode with Prescaler Disabled allowing clock reso-
lution down to 10ns (previously 1us).

» (ADD) Added SequenceDownload class to program newly created sequences into the Controller, at the back
of the Controller Sequence queue, SequenceManager class for triggering playback or modifying sequences
already in the queue and SequenceEvents for enabling interrupts from the Controller Sequence Engine to
user application software.

+ (ADD) Added ImageSequenceEntry struct for user creation of entries to load into an ImageSequence,
SequenceTermAction for specification of the process to be performed at the end of a sequence and class
ImageSequence for creating sequences to be downloaded to a Controller.

» (ADD) Optional Name field to Image class. The first 16 characters of the name string are downloaded to the
Image Index Table so that Images resident in memory on the Controller may be referenced by a descriptive
name.

» (ADD) Interrupt handling code to respond to interrupt requests from the Controller, interrupts individually
enabled when user code subscribes to events that are interrupt driven. All interrupts disabled on SD«
K Disconnect() or application termination.

» (BUGFIX) Added logic to ensure the FileSystemManager::Delete() function will not attempt to remove files
from an index that lies outside the FileSystemTable scope.

» (ADD) Added Interrupt capability through EventHandler mechanism so iMS hardware can efficiently notify
user application code when state changes occur in the hardware subsystems

+ (ADD) IEventHandler::EventAction virtual methods for returning 2 integer values and a byte vector to user
application code

108 v1.2.3

(Internal Release Only)

109 v1.2.2

(Internal Release Only)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

38

Release Notes

10.10 vi.2.1

(Internal Release Only)

10.11 v1.2.0

(7th April 2016)

- (ADD) Added ImagePlayer capability to delay playback start until triggered from external signal
» (ADD) Extended ImagePlayer capability to play Images directly from the ImagelndexTable

» (ADD) Added ImageTableEntry struct for user readback of Controller Image Memory contents using Image«
TableViewer class.

» (CHANGE) Image UUID's now returned as fixed size 16-byte std::arrays instead of variable std::vectors
» (ADD) Added Analog Sync (x2) and Digital Sync data fields to ImagePoint class
* (CHANGE) Embedded iMS hardware database in .dll so separate imshw.db file no longer required

» (ADD) Support for Image Index Table (IIT) for multiple images stored in Controller large capacity memory. IIT
readback on SDK Connect() and stored for reference in the IMSSystem object.

» (ADD) Extended IConnectionManager interface to add MemoryUpload() MemoryDownload() and Memory«
Progress() methods to trigger and monitor fast transfer large capacity direct memory 1/0O to supported Con-
trollers

* (CHANGE) Auxiliary::GetAnalogData and Diagnostics::GetDiagnosticsData now return measurement data
as Percent() instead of double

10.12 v1.1.0

(22nd March 2016)

* (BUGFIX) SetCalibrationTone amplitude now programmes correctly (was erroneously 1/4 of the required
amplitude due to bitwidth mismatch)

+ (ADD) Support for iMSP Controller through USB3.0 Interface
+ (ADD) IEventHandler::EventAction virtual method for returning floating point data to user application code

- (ADD) Diagnostics support for software readback of Logged Hours, Temperature and RF Power Amplifier
Forward / Reflected Power (VSWR) and DC Current measurements

» (ADD) Monitoring of Pixel Checksum Error Count between Controller and Synthesiser
+ (ADD) External Equipment Enable through on-board high power Optoisolator

» (ADD) External Update Signal for synchronisation of DDS IC to external system clock (SystemFunc::Update«
ClockSource)

+ (ADD) Startup Configuration for programming Synthesiser with non-volatile configuration to be retrieved at
power-up or reset

» (ADD) Assignment of Synchronous Output data (12-bit digital 'SDOR’, 2 analog outputs SDAC A/B) to various
data sources (SignalPath::SYNC_SRC)

- (ADD) Tone Buffer for storage of 256 unique FAP on the Synthesiser device with control through software
selection or external signal input

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

10.13 v1.0.1 39

» (ADD) Synthesiser Filesystem for permanent storage of Compensation Table, Tone Buffer, DDS Scripts and
User File Data

» (ADD) DDS Scripting for manual programming of DDS Synthesiser IC
+ (ADD) Auxiliary Classes including External Analog I/O, DDS Profile Control, LED Control

10.13 v1.0.1
(18th December 2015)
» (BUGFIX) Connection Manager cleans up object before disposal to avoid an exception being raised when the

application returns without first disconnecting from the iMS.

* (CHANGE) Internal Oscillator or External Clock Divider ratios now programmed into the Controller by the
ImagePlayer, not the Image.

* (CHANGE) ImagePlayer class must now be provided with the Image that is to be played (which must have
already been downloaded to the hardware). It will not play an Image that does not match the memory on the
hardware.

+ (ADD) External Clock Divider Ratio to Image class.

« (ADD) UUID (Universally Unique ldentification) to Image class to permit comparison of Image objects both
with each other and with Images resident in memory on the hardware.

10.14 v1.0.0

(15th November 2015)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

40

Release Notes

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 11

Bug List

Member iMS::FileSystemManager::Delete (FileSystemindex index)

Prior to v1.2.4 it was possible to attempt to delete an entry >= MAX_FST_ENTRIES. Doing so would have
generated an exception. The condition is now checked for and the function will fail (return false) if attempted.

Member iMS::SignalPath::SetCalibrationTone (const FAP &fap)
In v1.0 SDK calibration tone amplitude would be 25% of value provided in fap. Corrected in 1.1.0.

42

Bug List

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 12

Namespace Index

12.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:
iMS
The entire APl is encapsulated by the iMS namespace

44

Namespace Index

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 13

Hierarchical Index

13.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

IMS:Auxiliary . . . e e e 59
IMS::AuxiliaryEvents L 64
iMS::IMSController::Capabilities e 65
iIMS::IMSSynthesiser::Capabilities 66
iMS::CompensationEvents L e 68
iMS::CompensationPoint 71
iMS::CompensationPointSpecification L L 75
iMS::ConnectionList::ConnectionConfig e 88
iMS::ConnectionList L e 90
iMS::DDSScriptDownload e 93
iIMS::DDSScriptRegister 95
IMS::Degrees e e 98
IMS::DequeBase<< T > e e e 100
iMS::DequeBase< CompensationPoint > L 100

iMS::CompensationTable L 77
iIMS::DequeBase<< Image > 100

IMS:ImageGroup 145
iMS::DequeBase< ImagePoint > L 100

IMS:Image 131
IMS::Diagnostics e e e e 106
iMS::DiagnosticsEvents L L 110
IMS:FAP . e 111
iIMS::FileSystemManager e 113
iIMS::FileSystemTableEntry e 118
iIMS::FileSystemTableViewer e 120
IMS::Frequency e 123

IMS:KHZ . . e e 186

IMS:MHZ . . e e e e 197
IMS:FWVersion . . . o . o e e e e 125
iMS::IBulkTransfer o e e e e e 126

iMS::CompensationTableDownload e 84

iMS::ImageDownload L 140

iMS::ToneBufferDownload L 244
iMS::IEventHandler L e e e 128
iMS:iimageDownloadEvents L e 144

iMS::imagePlayer L e 151

46 Hierarchical Index
iMS::ImagePlayerEvents L e 158
iMS::ImagePoint 159
iMS::ImageProject L 163
iMS::ilmageSequenceEntry L L e 168
iMS::imageTableEntry L e 173
iMS::ImageTableViewer e 176
iIMS::IMSController 178
IMS:IMSOption L 180
iIMS::IMSSynthesiser L e e e e 181
IMSIMSSystem e e 183
iIMS::LibVersion 188
iIMS::ListBase<< T > e e 191
iMS::ListBase< CompensationFunction > L 191

iMS::CompensationFunctionList L 70
iMS::ListBase< CompensationPointSpecification > o . 191

iMS::CompensationFunction L 69
iMS::ListBase< ImageGroup > e e e e e 191

iMS::ImageGroupList L e 150
iMS::ListBase< ImageSequenceEntry > L 191

iMS::ImageSequence 166
iMS::ListBase< ToneBuffer > 191

iMS::ToneBufferList 249
IMS::Percent L e 200
iMS::lmagePlayer::PlayConfiguration e 202
IMS::RFChannel e e 203
iIMS::SequenceManager::SeqConfigurationo e 206
iIMS::SequenceDownload e 206
iIMS::SequenceEvents L L 208
iIMS::SequenceManager e e e e 209
iIMS::SignalPath 214
iIMS::SignalPathEvents e 225
iIMS::StartupConfiguration e 226
IMS::SystemFunc L 229
iIMS::SystemFuncEvents 237
iIMS::ToneBuffer e 238
iMS::ToneBufferEvents L e e e e 249
iIMS::UserFileReader e 250
iIMS::UserFileWriter L 252
iMS::VelocityConfiguration e 254

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 14

Class Index

14.1

Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

iMS:

iMS:

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

:Auxiliary

Provides auxiliary additional functions not directly related to Synthesiser operation 59

:AuxiliaryEvents

All the different types of events that can be triggered by the Auxiliaryclass 64
IMSController::Capabilities

Returns information about the capabilities of the Controller hardware 65
IMSSynthesiser::Capabilities

Returns information about the capabilities of the Synthesiser hardware 66
CompensationEvents

All the different types of events that can be triggered by the Compensation and Compensation«

TableDownload classes e e e 68
CompensationFunction

Class for performing Compensation related functions with the Synthesiser 69
CompensationFunctionList

A List of CompensationFunction's used as a container by ImageProject 70
CompensationPoint

Stores 4 data fields containing amplitude, phase, sync analogue and sync digital compensation

data 71
CompensationPointSpecification

Completely specifies the desired compensation at a spot frequency 75
CompensationTable

A table of CompensationPoints storing look-up data that can be transferred to memory in the

Synthesiser e 77
CompensationTableDownload

Provides a mechanism for downloading and verifying Compensation Tables to a Synthesiser's

Look-Up memory e e e 84
ConnectionList::ConnectionConfig

Controls the behaviour of a Connection Module during its discovery process 88
ConnectionList

Creates iMS Connection Interfaces and scans them to discover available iMS Systems 90
DDSScriptDownload

Provides a mechanism for transferring DDS Scripts into Filesystem memory 93
DDSScriptRegister

Create a register write to sendtothe DDSIC L. 95
Degrees

Type Definition for all operations that require an angle specification indegrees 98

48

Class Index

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS:

iMS::

iMS::

iMS::

DequeBase< T >
Template Class encapsulating a deque object and acting as a base deque class for other classes

inthe library to inheritfrom L 100
Diagnostics

Provides a mechanism for retrieving diagnostics data about the attached iMS System 106
DiagnosticsEvents

All the different types of events that can be triggered by the Diagnosticsclass 110
FAP

FAP (Frequency/Amplitude/Phase) triad stores the instantaneous definition of a single RF output 111
FileSystemManager

Provides user management operations for working with Synthesiser FileSystems 113
FileSystemTableEntry

Contains all the parameters that uniquely locate a File within the Synthesiser FileSystem . . . 118
FileSystemTableViewer

Provides a mechanism for viewing the FileSystemTable associated with an iMS System 120
Frequency

Type Definition for all operations that require a frequency specification 123
FWVersion

Stores the version number of firmware running on iMS hardware 125
IBulkTransfer

Interface Specification class for sending large binary data objects tothe iMS 126

IEventHandler
Interface Class for an Event Handler to be defined in User Code and subscribed to library events 128

Image

A sequence of ImagePoints played out sequentially by the Controller and driven by the Synthe-

SISEI e e e 131
ImageDownload

Provides a mechanism for downloading and verifying Images to a Controller's memory 140
ImageDownloadEvents

All the different types of events that can be triggered by the ImageDownload class 144
ImageGroup

An ImageGroup collects together multiple associated images and a single ImageSequence for

controlling Image playback order 145
ImageGrouplList

A List of ImageGroup's used as a container by ImageProject 150
ImagePlayer

Once an Image has been downloaded to Controller memory, ImagePlayer can be used to con-

figure and begin playback 151
ImagePlayerEvents

All the different types of events that can be triggered by the ImagePlayerclass 158
ImagePoint

Stores 4 FAP Triads containing frequency, amplitude and phase data for 4 RF channels 159
ImageProject

An ImageProject allows the user to organise their data and store it on the host computer . . . 163
:ImageSequence

An ImageSequence object completely defines a sequence to be played back on an iMS Con-
troller in terms by containing a list of ImageSequenceEntry 's plus a terminating action and

optional value L e e 166
ImageSequenceEntry

An ImageSequenceEntry object can be created by application software to specify the parameters

by which an Image is played back during an ImageSequence 168
ImageTableEntry

An ImageTableEntry is created by the SDK on connecting to an iMS System, one for each Image
that is stored in Controller memory and allocated in the Image Index Table. Further Image«

TableEntries are added to the table each time an Image is downloaded to the Controller 173
ImageTableViewer
Provides a mechanism for viewing the ImageTable associated with an iMS System 176

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

14.1 Class List 49

iMS

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::
iMS::

iMS::

iMS::

iMS::

iMS::

iMS:

iMS:

iMS:

iMS:

iMS::

:IMSController
Stores Capabilities, Description, Model & Version Number of an iMS Controller 178
IMSOption
An iIMS Synthesiser can support one iMS Option, which adds an additional hardware function to
the capabilities of the Synthesiser Lo 180
IMSSynthesiser
Stores Capabilities, Description, Model & Version Number of an iMS Synthesiser 181
IMSSystem
An object representing the overall configuration of an attached iIMS System and permits applica-
tionstoconnecttoit 183
kHz
Type Definition for all operations that require a frequency specification in kiloHertz 186
LibVersion
Access the version information forthe APl L 188
ListBase< T >
Template Class encapsulating a list object and acting as a base list class for other classes in the
library to inheritfrom 191
MHz
Type Definition for all operations that require a frequency specification in MegaHertz 197
Percent
Type Definition for all operations that require a percentage specificaton 200
ImagePlayer::PlayConfiguration
This struct sets the attributes for the ImagePlayer to use when initiating an Image Playback . . 202
RFChannel
Type that represents the integer values 1, 2, 3 and 4, one each for the RF Channels of an iMS
Synthesiser e e 203
SequenceManager::SeqConfiguration
This struct sets the attributes for the Sequence to use when initiating an Sequence Playback . 206
SequenceDownload
This class is a worker for transmitting an ImageSequence to an iMS Controller and joining it to
the back of the sequence queue L 206
SequenceEvents
All the different types of events that can be triggered by the SequenceManager class 208
SequenceManager 209
SignalPath
Controls Signal routing and other parameters related to the RF output signals 214
SignalPathEvents
All the different types of events that can be triggered by the SignalPathclass 225
StartupConfiguration
The Synthesiser stores in its non-volatile memory a set of configuration values that are preloaded
onstartup e 226
SystemFunc
Provides System Management functions not directly related to RF signal generation or signal
pathcontrol 229
SystemFuncEvents
All the different types of events that can be triggered by the SystemFuncclass 237
:ToneBuffer
An array of 4-channel FAP Tones stored in memory on the Synthesiser 238
:ToneBufferDownload
Provides a mechanism for downloading ToneBuffer's to a Synthesiser's LTB memory 244
:ToneBufferEvents
All the different types of events that can be triggered by the ToneBuffer and ToneBufferDownload
classes L 249
:ToneBufferList
A List of ToneBuffer's used as a container by ImageProject 249
UserFileReader
Provides a mechanism for retrieving User File data from the Synthesiser FileSystem 250

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

50

Class Index

iMS::UserFileWriter
Provides a mechanism for committing User File data to the Synthesiser FileSystem 252
iMS::VelocityConfiguration
Sets the parameters required to control the operation of the Encoder Input / Velocity Compensa-
tionfunction L L 254

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 15

File Index

15.1 File List

Here is a list of all documented files with brief descriptions:

Auxiliary.h
Classes for performing various auxiliary actions not directly related to driving Acousto-Optic de-
VICES . . o e 257
Compensation.h
Classes for creating and downloading data that is used in the Compensation tables of the Syn-
thesiser e e 259
ConnectionList.h
Creates iMS Connection Interfaces for Application Use and scans them to discover all available

IMS Systems e 261
Containers.h

Container Classes for storing various types of data related to Image classes and others 262
Diagnostics.h

Access diagnostic reporting information about the connected iMS System 264
FileSystem.h

Classes for reading, writing and managing the file system built into an iIMS Synthesiser 265
IBulkTransfer.h

Interface Specification class for sending large binary data objects tothe iMS 268
IEventHandler.h

Interface Class for User Application code to receive and process events from the iMS library . . 269
Image.h

Classes for storing sequences of synchronous multi-channel RF drivedata 270
ImageOps.h

Classes for downloading and playback of Imagedata 272
ImageProject.h

Classes for organising Images and associateddata 274
IMSSystem.h

Classes within this group are used to store information about an iMS System and to Connect /

Disconnectfromit L 275
IMSTypeDefs.h

Useful Type Definitions for working with iMS Systems 277
LibVersion.h

Access the API's version information L oL 278
SignalPath.h

Classes for controlling the flow of data and RF signals through the Synthesiser 280

SystemFunc.h

Classes for performing system functions not directly related to RF signal generation and output 281
ToneBuffer.h

Class for storing an array of Synthesisertones 282

52

File Index

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 16

Namespace Documentation

16.1 iMS Namespace Reference

The entire APl is encapsulated by the iMS namespace.

Classes

* class Auxiliary
Provides auxiliary additional functions not directly related to Synthesiser operation.
+ class AuxiliaryEvents
All the different types of events that can be triggered by the Auxiliary class.
+ class CompensationEvents
All the different types of events that can be triggered by the Compensation and CompensationTableDownload classes.
+ class CompensationFunction
Class for performing Compensation related functions with the Synthesiser.
+ class CompensationFunctionList
A List of CompensationFunction's used as a container by ImageProject.
* class CompensationPoint
Stores 4 data fields containing amplitude, phase, sync analogue and sync digital compensation data.
« class CompensationPointSpecification
Completely specifies the desired compensation at a spot frequency.
+ class CompensationTable
A table of CompensationPoints storing look-up data that can be transferred to memory in the Synthesiser.
« class CompensationTableDownload
Provides a mechanism for downloading and verifying Compensation Tables to a Synthesiser's Look-Up memory.
« class ConnectionList
Creates iMS Connection Interfaces and scans them to discover available iMS Systems.
« class DDSScriptDownload
Provides a mechanism for transferring DDS Scripts into Filesystem memory.
« class DDSScriptRegister
Create a register write to send to the DDS IC.
* class Degrees
Type Déefinition for all operations that require an angle specification in degrees.
* class DequeBase

Template Class encapsulating a deque object and acting as a base deque class for other classes in the library to
inherit from.

« class Diagnostics

54

Namespace Documentation

Provides a mechanism for retrieving diagnostics data about the attached iMS System.
class DiagnosticsEvents
All the different types of events that can be triggered by the Diagnostics class.
struct FAP
FAP (Frequency/Amplitude/Phase) triad stores the instantaneous definition of a single RF output.
class FileSystemManager
Provides user management operations for working with Synthesiser FileSystems.
struct FileSystemTableEntry
Contains all the parameters that uniquely locate a File within the Synthesiser FileSystem.
class FileSystemTableViewer

Provides a mechanism for viewing the FileSystemTable associated with an iMS System.
class Frequency
Type Definition for all operations that require a frequency specification.
struct FWVersion
Stores the version number of firmware running on iMS hardware.
class IBulkTransfer
Interface Specification class for sending large binary data objects to the iMS.
class IEventHandler

Interface Class for an Event Handler to be defined in User Code and subscribed to library events.
class Image
A sequence of ImagePoints played out sequentially by the Controller and driven by the Synthesiser.
class ImageDownload
Provides a mechanism for downloading and verifying Images to a Controller's memory.
class ImageDownloadEvents
All the different types of events that can be triggered by the ImageDownload class.
class ImageGroup
An ImageGroup collects together multiple associated images and a single ImageSequence for controlling Image
playback order.
class ImageGroupList

A List of ImageGroup's used as a container by ImageProject.

class ImagePlayer
Once an Image has been downloaded to Controller memory, ImagePlayer can be used to configure and begin play-
back.

class ImagePlayerEvents

All the different types of events that can be triggered by the ImagePlayer class.
class ImagePoint

Stores 4 FAP Triads containing frequency, amplitude and phase data for 4 RF channels.
class ImageProject

An ImageProject allows the user to organise their data and store it on the host computer.

class ImageSequence
An ImageSequence object completely defines a sequence to be played back on an iMS Controller in terms by con-
taining a list of ImageSequenceEntry 's plus a terminating action and optional value.

struct ImageSequenceEntry
An ImageSequenceEntry object can be created by application software to specify the parameters by which an Image
is played back during an ImageSequence.

struct ImageTableEntry
An ImageTableEntry is created by the SDK on connecting to an iMS System, one for each Image that is stored in

Controller memory and allocated in the Image Index Table. Further ImageTableEntries are added to the table each
time an Image is downloaded to the Controller.

class ImageTableViewer
Provides a mechanism for viewing the ImageTable associated with an iMS System.
class IMSController

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

16.1 iMS Namespace Reference 55

Stores Capabilities, Description, Model & Version Number of an iMS Controller.
+ class IMSOption
An iMS Synthesiser can support one iMS Option, which adds an additional hardware function to the capabilities of
the Synthesiser.
+ class IMSSynthesiser
Stores Capabilities, Description, Model & Version Number of an iMS Synthesiser.
+ class IMSSystem
An object representing the overall configuration of an attached iMS System and permits applications to connect to it.
* class kHz
Type Definition for all operations that require a frequency specification in kiloHertz.
+ class LibVersion
Access the version information for the API.
« class ListBase
Template Class encapsulating a list object and acting as a base list class for other classes in the library to inherit from.
* class MHz
Type Definition for all operations that require a frequency specification in MegaHertz.
+ class Percent
Type Definition for all operations that require a percentage specification.
+ class RFChannel
Type that represents the integer values 1, 2, 3 and 4, one each for the RF Channels of an iMS Synthesiser.
« class SequenceDownload
This class is a worker for transmitting an ImageSequence to an iMS Controller and joining it to the back of the
sequence queue.
+ class SequenceEvents
All the different types of events that can be triggered by the SequenceManager class.
+ class SequenceManager
« class SignalPath
Controls Signal routing and other parameters related to the RF output signals.
+ class SignalPathEvents
All the different types of events that can be triggered by the SignalPath class.
« struct StartupConfiguration
The Synthesiser stores in its non-volatile memory a set of configuration values that are preloaded on startup.
* class SystemFunc
Provides System Management functions not directly related to RF signal generation or signal path control.
+ class SystemFuncEvents
All the different types of events that can be triggered by the SystemFunc class.
+ class ToneBuffer
An array of 4-channel FAP Tones stored in memory on the Synthesiser.
+ class ToneBufferDownload
Provides a mechanism for downloading ToneBuffer's to a Synthesiser's LTB memory.
+ class ToneBufferEvents
All the different types of events that can be triggered by the ToneBuffer and ToneBufferDownload classes.
+ class ToneBufferList
A List of ToneBuffer's used as a container by ImageProject.
« class UserFileReader
Provides a mechanism for retrieving User File data from the Synthesiser FileSystem.
* class UserFileWriter
Provides a mechanism for committing User File data to the Synthesiser FileSystem.
« struct VelocityConfiguration

Sets the parameters required to control the operation of the Encoder Input / Velocity Compensation function.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

56 Namespace Documentation

Typedefs

« using DDSScript = std::vector< DDSScriptRegister >

DDSScript stores the sequence of register writes to be loaded onto the Synthesiser. Can be manipulated using
the normal container operations provided by std::vector

« using FileSystemIndex = int

FileSystemindex represents the entry number for a particular file in the FileSystemTable.
+ using Imagelndex = int

Each Imagelndex is an offset into the Image Index Table that uniquely refers to an Image stored in Controller Memory.
+ typedef ImageGroup ImageFile

For backwards compatibility with code written against SDK 1.2.6 or earlier.
+ using TBEntry = ImagePoint

TBEntry is synonymous with ImagePoint An entry in the Tone Buffer contains four FAPs, one per output channel and
is therefore comparable to a single ImagePoint making up one entry in an Image.

Enumerations

» enum FileSystemTypes : std::uint8_t {
FileSystemTypes::NO_FILE = 0, FileSystemTypes::COMPENSATION_TABLE = 1, FileSystemTypes:: TON«
E_BUFFER = 2, FileSystemTypes::DDS_SCRIPT = 3,
FileSystemTypes::USER_DATA = 15}

All of the different (up to 15) types of file available to the filesystem.
» enum FileDefault : bool { FileDefault::DEFAULT = true, FileDefault::NON_DEFAULT = false }

Default flag tags a file entry for execution at startup (only one per filetype)
« enum ImageRepeats { ImageRepeats::NONE, ImageRepeats::PROGRAM, ImageRepeats::FOREVER }

Each Image can be repeated, either a programmable number of times, or indefinitely.

» enum SequenceTermAction : std::uint8_t {
SequenceTermAction::DISCARD = 0, SequenceTermAction::RECYCLE = 1, SequenceTermAction::STOP «
_DISCARD = 2, SequenceTermAction::STOP_RECYCLE = 3,
SequenceTermAction::REPEAT = 4, SequenceTermAction::REPEAT_FROM = 5}

Operation to perform on the completion of the last repeat of the last entry in a Sequence.

Variables

+ const unsigned int MAX_FST_ENTRIES = 33

Maximum number of entries that may be stored in the FileSystem.

16.1.1 Detailed Description

The entire APl is encapsulated by the iIMS namespace.

In User application code, either add the line 'using namespace iMS;' at the start of your application, or prefix all
classes, functions etc with 'iIMS::'

Author

Dave Cowan

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

16.1 iMS Namespace Reference 57

16.1.2 Typedef Documentation
16.1.2.1 using iMS::TBEntry = typedef ImagePoint

TBEntry is synonymous with ImagePoint An entry in the Tone Buffer contains four FAPs, one per output channel
and is therefore comparable to a single ImagePoint making up one entry in an Image.
Since

1.1

16.1.3 Enumeration Type Documentation
16.1.3.1 enum iMS::FileDefault: bool [strong]
Default flag tags a file entry for execution at startup (only one per filetype)

Since

1.1

Enumerator

DEFAULT Default indicates the Synthesiser should attempt to execute that file during its startup procedure.
NON_DEFAULT Non-default is the normal state for most files.

16.1.3.2 enum iMS::FileSystemTypes : std::uint8_t [strong]
All of the different (up to 15) types of file available to the filesystem.

Since

1.1

Enumerator

NO_FILE No file stored at this FileSystemTable entry.
COMPENSATION_TABLE File contains Compensation table data.
TONE_BUFFER File contains ToneBuffer data.

DDS_SCRIPT File contains a DDS Script for manual programming of the DDS.
USER _DATA File contains user data for application use.

16.1.3.3 enum iMS::ImageRepeats [strong]
Each Image can be repeated, either a programmable number of times, or indefinitely.

Since

1.21

Enumerator

NONE The Image is played back only once.

PROGRAM The Image is played back a programmable number of times according to the value set in the
PlayConfiguration table.

FOREVER The Image is played back repeatedly until stopped by the application.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

58 Namespace Documentation

16.1.3.4 enum iMS::SequenceTermAction : std::uint8_t [strong]
Operation to perform on the completion of the last repeat of the last entry in a Sequence.

Since

1.24

Enumerator

DISCARD Delete the ImageSequence from the Sequence Queue and move on to the next Sequence, if it
exists, otherwise Stop.

RECYCLE Move the ImageSequence to the end of Sequence Queue and move on to the next Sequence, if it
exists, otherwise repeat this ImageSequence.

STOP_DISCARD Delete the ImageSequence from the Sequence Queue and stop playback.
STOP_RECYCLE Move the ImageSequence to the end of Sequence Queue and stop playback.
REPEAT No effect on the Sequence Queue. Repeat the current Sequence.

REPEAT_FROM No effect on the Sequence Queue. Repeat the current Sequence starting from the Image«
SequenceEntry index specified in the Termination Value.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 17

Class Documentation

17.1

iMS::Auxiliary Class Reference

Provides auxiliary additional functions not directly related to Synthesiser operation.

#include <includel\Auxiliary.h>

Public Types

enum LED_SOURCE : std::uint16_t {

LED_SOURCE::OFF = 0, LED_SOURCE::ON =1, LED_SOURCE::PULS = 2, LED_SOURCE:NPULS = 3,
LED SOURCE::PIXEL_ACT =4, LED_SOURCE::CTRL_ACT =5, LED_SOURCE::COMMS_HEALTHY =6,
LED SOURCE::COMMS_UNHEALTHY =7,

LED SOURCE::RF_GATE =8, LED_SOURCE:INTERLOCK =9, LED SOURCE::.LASER =10, LED_SO«-
URCE::CHECKSUM = 11,

LED_SOURCE::OVERTEMP = 12, LED_SOURCE::PLL_LOCK =13}

Selects the function to be assigned to an LED.
enum LED_SINK { LED_SINK::GREEN, LED_SINK::YELLOW, LED_SINK::RED }

Which LED to assign function to.
enum DDS_PROFILE : std::uint16_t { DDS_PROFILE::OFF = 0, DDS_PROFILE::EXTERNAL = 16, DDS_+«
PROFILE::HOST = 32}

Control Source for Profile input to DDS Synthesiser IC.
enum EXT_ANLG_INPUT { EXT_ANLG_INPUT::A, EXT_ANLG_INPUT::B}

Reference enum for addressing both analog inputs.

Public Member Functions

Constructor & Destructor

* Auxiliary (const IMSSystem &ims)

Constructor for Auxiliary Object.
» ~Auxiliary ()

Destructor for Auxiliary Object.

LEDs

* bool AssignLED (const LED_SINK &sink, const LED_SOURCE &src) const
Assignment function for LEDs.

DDS Profile Control

60 Class Documentation

* bool SetDDSProfile (const DDS_PROFILE &prfl) const

Control the DDS Profile feature.
* bool SetDDSProfile (const DDS_PROFILE &prfl, const std::uint16_t &select) const

External Analog I/0

* bool UpdateAnalogln ()

Instructs the synthesiser to capture the current value of both the external analog inputs.
» const std::map< EXT_ANLG_INPUT, Percent > & GetAnalogData () const

Returns the analog measurements read by the conversion triggered by a call to UpdateAnalogin()
* bool UpdateAnalogOut (Percent &pct) const

Instructs the synthesiser to update the analog output value provided externally.

Event Notifications
+ void AuxiliaryEventSubscribe (const int message, |IEventHandler xhandler)

Subscribe a callback function handler to a given AuxiliaryEvents event.
+ void AuxiliaryEventUnsubscribe (const int message, const IEventHandler xhandler)

Unsubscribe a callback function handler from a given AuxiliaryEvents event.
17.1.1 Detailed Description

Provides auxiliary additional functions not directly related to Synthesiser operation.

Author

Dave Cowan

Date
2016-02-18

Since

1.1

17.1.2 Member Enumeration Documentation
17.1.21 enum iMS::Auxiliary::DDS_PROFILE : std::uint16_t [strong]

Control Source for Profile input to DDS Synthesiser IC.

Since

1.1

Enumerator
OFF Profile Selection disabled (default)
EXTERNAL Profile can be controlled from external signal pin inputs.

HOST Profile can be controlled from user application software.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.1 iMS::Auxiliary Class Reference 61

17.1.2.2 enum iMS::Auxiliary::EXT_ANLG_INPUT [strong]
Reference enum for addressing both analog inputs.

Since

1.1

Enumerator

A Refer to analog input A.
B Refer to analog input B.

17.1.2.3 enum iMS::Auxiliary::LED_SINK [strong]
Which LED to assign function to.

Since

1.1

Enumerator

GREEN Synthesiser Green LED.
YELLOW Synthesiser Yellow LED.
RED Synthesiser Red LED.

17.1.2.4 enum iMS::Auxiliary::LED_SOURCE : std::uint16_t [strong]

Selects the function to be assigned to an LED.

Since

1.1

Enumerator

OFF LED turned off.

ON LED turned on.

PULS LED slowly pulses.

NPULS LED slowly pulses with opposite phase to PULS.

PIXEL_ACT llluminates whenever there is activity on the Pixel Interface between Controller and Synthesiser.
CTRL_ACT llluminates whenever serial communications activity is detected.

COMMS_HEALTHY llluminates when communications is in a normal condition.

COMMS_UNHEALTHY llluminates when Communications Healthy state has detected a timeout (no message
received within healthy comms window)

RF_GATE llluminates when RF Gate to power amplifier is enabled and interlock is not set.

INTERLOCK llluminates when interlock is active (overtemperature, user disabled or no connection to
amplifier/acoust-optic device)

LASER llluminates when external equipment is turned on by user.

CHECKSUM llluminates when a checksum error is detected on the pixel interface between Controller and
Synthesiser (remains on until cleared in software)

OVERTEMP llluminates when iMS system is overtemperature or a fan has failed.

PLL_LOCK llluminates when master clock circuit PLL is locked (either to internal TCXO or externally supplied
reference)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

62 Class Documentation

17.1.3 Constructor & Destructor Documentation
17.1.3.1 iMS::Auxiliary::Auxiliary (const IMSSystem & ims)

Constructor for Auxiliary Object.

An IMSSystem object, representing the configuration of an iIMS target must be passed by const reference to the
Auxiliary constructor.

The IMSSystem object must exist before the Auxiliary object, and must remain valid (not destroyed) until the Auxiliary
object itself is destroyed.

Once constructed, the object can neither be copied or assigned to another instance.

Parameters

] in ims | A const reference to the iMS System

Since

1.1

17.1.4 Member Function Documentation
17.1.41 bool iMS::Auxiliary::AssignLED (const LED_SINK & sink, const LED_SOURCE & src) const

Assignment function for LEDs.

Provide two inputs indicating which LED to target and what function to assign to it.

Parameters

in sink | Which LED to target

in src | the function that the LED should now perform
Returns

true if the assignment request was sent successfully

Since

1.1

17.1.4.2 void iMS::Auxiliary::AuxiliaryEventSubscribe (const int message, IEventHandler x handler)

Subscribe a callback function handler to a given AuxiliaryEvents event.

Aucxiliary can callback user application code when an event occurs that affects the signal path. Supported events
are listed under AuxiliaryEvents. The callback function must inherit from the |IEventHandler interface and override
its EventAction() method.

Use this member function call to subscribe a callback function to a AuxiliaryEvents event. For the period that a
callback is subscribed, each time an event in Auxiliary occurs that would trigger the subscribed AuxiliaryEvents
event, the user function callback will be executed.

Parameters

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.1 iMS::Auxiliary Class Reference 63

in message | Use the AuxiliaryEvents::Event enum to specify an event to subscribe to

in handler | A function pointer to the user callback function to execute on the event trigger.
Since

1.1

17.1.4.3 void iMS::Auxiliary::AuxiliaryEventUnsubscribe (const int message, const IEventHandler « handler)

Unsubscribe a callback function handler from a given AuxiliaryEvents event.

Removes all links to a user callback function from the Event Trigger map so that any events that occur in the Auxiliary
object following the Unsubscribe request will no longer execute that function

Parameters
in message | Use the AuxiliaryEvents::Event enum to specify an event to unsubscribe from
in handler | A function pointer to the user callback function that will no longer execute on
an event
Since
1.1

17.1.4.4 const std::map<EXT_ANLG_INPUT, Percent>& iMS::Auxiliary::GetAnalogData () const

Returns the analog measurements read by the conversion triggered by a call to UpdateAnalogin()

Returns

a std::map containing one entry for each analog input to the Synthesiser. The value associated with each entry
in the map is returned as a percentage object where 100% represents the full scale analog voltage (typically
10.0V)

Since

1.1

17.1.45 bool iMS::Auxiliary::SetDDSProfile (const DDS_PROFILE & prfl) const

Control the DDS Profile feature.

The DDS IC used at the heart of the Synthesiser has a 4-wide signal input that can be used for modulation (FSK,
PSK, ASK), to start/stop the sweep accumulators or used to ramp up/ramp down the output amplitude. By default,
the feature is disabled but this function can be used to set the control source for the profile signal either to external
for hardware selection or to host for software selection

Parameters

in prfl | select the profile pin control source

Returns

true if the profile control soruce request was sent successfully

17.1.4.6 bool iMS::Auxiliary::SetDDSProfile (const DDS_PROFILE & prfl, const std::uint16_t & select) const

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

64 Class Documentation

Parameters
in select | chooses the profile signal value to provide when driven from software
in prfl | select the profile pin control source

17.1.4.7 bool iMS::Auxiliary::UpdateAnalogin ()

Instructs the synthesiser to capture the current value of both the external analog inputs.

There are 2 external analog input sources which can provide an auxiliary measurement of external signal data to
user software for example to monitor environmental data.

Call this function to initiate a measurement conversion. Once completed, the results will be returned to user code
by a callback with Event EXT_ANLG_UPDATE_AVAILABLE. The callback handler can then read the conversion
results from the GetAnalogData() function.

Returns

true if the conversion request was sent successfully.

Since

1.1

17.1.4.8 bool iMS::Auxiliary::UpdateAnalogOut (Percent & pct) const

Instructs the synthesiser to update the analog output value provided externally.

There is a single channel of analog output data which may provide an auxiliary analog signal to the external signal
for example to indicate some internal system parameter state.

Parameters
in pct | The percentage value to output where 100% represents full scale analog volt-
age (typ. 10.0V)
Returns

true if the update request was sent successfully

The documentation for this class was generated from the following file:

* Auxiliary.h

17.2 iMS::AuxiliaryEvents Class Reference

All the different types of events that can be triggered by the Auxiliary class.

#include <includel\Auxiliary.h>

Public Types

« enum Events { EXT_ANLG_UPDATE_AVAILABLE, EXT_ANLG_READ_FAILED, Count }

List of Events raised by the Auxiliary module.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.3 iMS::IMSController::Capabilities Struct Reference 65

17.2.1 Detailed Description

All the different types of events that can be triggered by the Auxiliary class.

Some events contain floating point parameter data which can be processed by the IEventHandler::EventAction
derived method

Author

Dave Cowan

Date
2016-02-11

Since

1.1

17.2.2 Member Enumeration Documentation
17.2.2.1 enum iMS::AuxiliaryEvents::Events

List of Events raised by the Auxiliary module.

Enumerator

EXT_ANLG_UPDATE_AVAILABLE Previous Analog Input Update request completed; data available to be
read.

EXT_ANLG_READ_FAILED Previous Analog Input Update request completed; request failed.
The documentation for this class was generated from the following file:

 Auxiliary.h

17.3 iMS::IMSController::Capabilities Struct Reference

Returns information about the capabilities of the Controller hardware.
#include <include/IMSSystem.h>

Collaboration diagram for iMS::IMSController::Capabilities:

iMS::Frequency

3

| MaxlmageRate
I

iMS::IMSController
::Capabilities

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

66 Class Documentation

Public Attributes

* int nSynthinterfaces { 1 }

A Controller can have multiple Synthesiser interfaces. This field reports how many there are (NOT necessarily how
many Synthesisers are connected)

» bool FastimageTransfer { false }

Some Controllers support a mechanism for transferring bulk Image data much faster than through the standard
protocol.

« int MaxlmageSize { 4096 }

The maximum number of points that can be stored in a single Image downloaded to the Controller.

bool SimultaneousPlayback { false }

Indicates whether the Controller supports Image downloading and Image playback simultaneously.

» Frequency MaxlmageRate { 250.0 }

The maximum clock rate supported during Image playback.

17.3.1 Detailed Description

Returns information about the capabilities of the Controller hardware.

This struct is initialised during the Connection Scan process

Author

Dave Cowan

Date
2015-11-03

Since

1.0

The documentation for this struct was generated from the following file:

* IMSSystem.h

17.4 iMS::IMSSynthesiser::Capabilities Struct Reference

Returns information about the capabilities of the Synthesiser hardware.

#include <include/IMSSystem.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.4 iMS::IMSSynthesiser::Capabilities Struct Reference 67

Collaboration diagram for iMS::IMSSynthesiser::Capabilities:

iMS::Frequency

iMS::MHz

)

| lowerFrequency
jupperFrequency

iMS::IMSSynthesiser
::Capabilities

Public Attributes

* MHz lowerFrequency { 0.0 }

the Lowest RF output frequency that can be reproduced by the Synthesiser
* MHz upperFrequency { 250.0 }

the Highest RF output frequency that can be reproduced by the Synthesiser
* int freqBits { 16 }

the internal bit representation of RF frequency data
* int amplBits { 10}

the internal bit representation of RF amplitude data
« int phaseBits { 12}

the internal bit representation of RF phase data
» int LUTDepth {12}

the power-of-2 length of Compensation Tables (number of frequency bits used to address the table)
* int LUTAmpIBits { 12 }

the field width of amplitude data stored in the Compensation Tables
« int LUTPhaseBits { 14 }

the field width of phase data stored in the Compensation Tables
* int LUTSyncABits { 12 }

the field width of analogue synchronous data stored in the Compensation Tables
* int LUTSyncDBits { 12}

the field width of digital synchronous data stored in the Compensation Tables
17.4.1 Detailed Description

Returns information about the capabilities of the Synthesiser hardware.

This struct is initialised during the Connection Scan process

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

68 Class Documentation

Author

Dave Cowan

Date
2015-11-03

Since

1.0

The documentation for this struct was generated from the following file:

* IMSSystem.h

17.5 iMS::CompensationEvents Class Reference

All the different types of events that can be triggered by the Compensation and CompensationTableDownload
classes.

#include <include\Compensation.h>

Public Types

» enum Events {
RX_DDS_POWER, DOWNLOAD_FINISHED, DOWNLOAD_ERROR, VERIFY_SUCCESS,
VERIFY_FAIL, Count }

List of Events raised by the Compensation Class and Compensation Table Downloader.

17.5.1 Detailed Description

All the different types of events that can be triggered by the Compensation and CompensationTableDownload
classes.

Some events contain integer parameter data which can be processed by the IEventHandler::EventAction derived
method

Author

Dave Cowan

Date
2015-11-11

Since

1.0

17.5.2 Member Enumeration Documentation
17.5.2.1 enum iMS::CompensationEvents::Events

List of Events raised by the Compensation Class and Compensation Table Downloader.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.6 iMS::CompensationFunction Class Reference 69

Enumerator

RX_DDS_POWER Not used.

DOWNLOAD_FINISHED Event raised when CompensationTableDownload has confirmed that the iMS Con-
troller received all of the Compensation Table data.

DOWNLOAD_ERROR Event raised each time the CompensationTableDownload class registers an error in
the download process.

VERIFY_SUCCESS Event raised on completion of a download verify, if the download was successfully veri-
fied.

VERIFY_FAIL Event raised on completion of a download verify, if the download failed. param contains the
number of failures recorded.

The documentation for this class was generated from the following file:

» Compensation.h

17.6 iMS::CompensationFunction Class Reference

Class for performing Compensation related functions with the Synthesiser.
#include <include/Compensation.h>

Inheritance diagram for iIMS::CompensationFunction:

iMS::ListBase< Compensation
PointSpecification >

iMS::CompensationFunction

Collaboration diagram for iMS::CompensationFunction:

iIMS::ListBase< Compensation
PointSpecification >

iMS::CompensationFunction

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

70

Class Documentation

Public Member Functions
Constructor & Destructor

+ CompensationFunction ()

Constructor for Compensation Object.
» ~CompensationFunction ()

Destructor for Compensation Object.
» CompensationFunction (const CompensationFunction &)

Copy Constructor.

» CompensationFunction & operator= (const CompensationFunction &)

Assignment Constructor.

Additional Inherited Members

17.6.1 Detailed Description

Class for performing Compensation related functions with the Synthesiser.

The purpose of this class is to perform compensation tasks such as measuring the diffraction efficiency of an AO
device across a range of frequencies. Such data can then be used to build Compensation tables.

It is not used for storing Compensation Table data or for downloading Compensation Tables. See the

CompensationTable and CompensationTableDownload classes for these requirements.

Author

Dave Cowan

Date
2016-11-03

Since

1.3

17.6.2 Constructor & Destructor Documentation
17.6.2.1 iMS::CompensationFunction::CompensationFunction ()
Constructor for Compensation Object.

Since

1.3

The documentation for this class was generated from the following file:

» Compensation.h

17.7 iMS::CompensationFunctionList Class Reference

A List of CompensationFunction's used as a container by ImageProject.

#include <include/Image.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.8 iMS::CompensationPoint Class Reference

71

Inheritance diagram for iMS::CompensationFunctionList:

iIMS::ListBase< Compensation
Function >

iMS::CompensationFunctionList

Collaboration diagram for iMS::CompensationFunctionList:

iMS::ListBase< Compensation
Function >

iMS::CompensationFunctionList

Additional Inherited Members

17.7.1 Detailed Description

A List of CompensationFunction's used as a container by ImageProject.

Date
2016-11-09

Since

1.3

The documentation for this class was generated from the following file:

» ImageProject.h

17.8 iMS::CompensationPoint Class Reference

Stores 4 data fields containing amplitude, phase, sync analogue and sync digital compensation data.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

72 Class Documentation

#include <include/Compensation.h>

Public Member Functions

» CompensationPoint (const CompensationPoint &)

Copy Constructor.
» CompensationPoint & operator= (const CompensationPoint &)

Assignment Constructor.
* bool operator== (CompensationPoint const &rhs) const

Equality Operator.

Constructors & Destructor

» CompensationPoint (Percent ampl=0.0, Degrees phase=0.0, unsigned int sync_dig=0, double sync_«
anlg=0.0)
+ ~CompensationPoint ()

Get/Set field data for the CompensationPoint

+ void Amplitude (const Percent &l)
Setter for Amplitude field.

+ const Percent & Amplitude () const
Getter for Amplitude field.

void Phase (const Degrees &phase)
Setter for Phase field.

+ const Degrees & Phase () const
Getter for Phase field.

void SyncDig (const unsigned int &sync)
Setter for Digital Sync Data field.

+ const std::uint32_t & SyncDig () const
Getter for Digital Sync Data field.

void SyncAnlg (const double &sync)
Setter for Analogue Sync Data field.

const double & SyncAnlg () const
Getter for Analogue Sync Data field.

17.8.1 Detailed Description

Stores 4 data fields containing amplitude, phase, sync analogue and sync digital compensation data.

A CompensationPoint represents one entry in the CompensationTable and is defined for a fixed frequency that is
linearly spaced within the frequency range reproducible by the Synthesiser.

Each point has 4 fields, one each for amplitude compensation, phase steering, synchronous analogue and digital
data.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.8 iMS::CompensationPoint Class Reference

73

17.8.2 Constructor & Destructor Documentation

17.8.2.1 iMS::CompensationPoint::CompensationPoint (Percent amp/ = 0. 0, Degrees phase = 0 . 0, unsigned int
sync_dig = 0, double sync_anlg=0.0)

brief Compensation Point Constructor

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

74 Class Documentation

Parameters
in ampl | The initial Amplitude Compensation value
in phase | The initial Phase Steering value
in sync_dig | The initial Synchronous Digital Data value
in sync_anlg | The initial Synchronous Analogue Data value
Since
1.0

17.8.3 Member Function Documentation
17.8.3.1 void iMS::CompensationPoint::Amplitude (const Percent & ampl)

Setter for Amplitude field.

Amplitude, specified as a percentage figure from 0 - 100%, is applied to the signal amplitude passing from the
Controller to the Synthesiser, resulting in a combined amplitude signal that is compensated for any variation in
frequency response of the RF signal chain.

Parameters

in ampl | The Amplitude value to set the Compensation field to

17.8.3.2 const Percent& iMS::CompensationPoint::Amplitude () const
Getter for Amplitude field.

Returns

the CompensationPoint's Amplitude value

17.8.3.3 bool iMS::CompensationPoint::operator== (CompensationPoint const & rhs) const

Equality Operator.

Since

1.3

17.8.3.4 void iMS::CompensationPoint::Phase (const Degrees & phase)

Setter for Phase field.

Phase, specified in Degrees from 0 - 360, defines an additional phase offset applied to RF Channel 2 compared with
RF Channel 1. The same phase offset is added cumulatively to subsequent output channels so that RF Channel 4
has an offset of 3 times the table phase value when compared with RF Channel 1.

Parameters

in phase \ The Phase value to set the Compensation field to

17.8.3.5 const Degrees& iMS::CompensationPoint::Phase () const

Getter for Phase field.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.9 iMS::CompensationPointSpecification Class Reference 75

Returns

the CompensationPoint's Phase value

17.8.3.6 void iMS::CompensationPoint::SyncAnlg (const double & sync)

Setter for Analogue Sync Data field.

Analogue Sync data can be routed to the SDAC signals output externally from the Synthesiser. They can be used
for custom-scaled analogue frequency signals or any other purpose that requires a frequency-dependent analogue
signal. The analogue value is specified in the range 0.0 to +1.0 which is converted to an unsigned bit representation
stored in the CompensationTable. Any values outside the range will be clamped. The number of bits used is
hardware dependent and can be read from the IMSSynthesiser::Capabilities struct.

Parameters

in sync | The Analogue Sync value to set the Compensation field to

17.8.3.7 const double& iMS::CompensationPoint::SyncAnlg () const
Getter for Analogue Sync Data field.

Returns

the CompensationPoint's Analogue Sync Data field

17.8.3.8 void iMS::CompensationPoint::SyncDig (const unsigned int & sync)

Setter for Digital Sync Data field.

Digital Sync data can be routed to the SDIO signals output externally from the Synthesiser. They can be used for
triggering external hardware, for test purposes, or anything else that requires a frequency-dependent logic signal.
The number of bits available is dependent on the hardware and can be read from the IMSSynthesiser::Capabilities
struct. The least significant bit of the unsigned int always maps to SDIO[0]

Parameters

in sync | The Digital Sync value to set the Compensation field to

17.8.3.9 const std::uint32_t& iMS::CompensationPoint::SyncDig () const
Getter for Digital Sync Data field.

Returns

the CompensationPoint's Digital Sync Data field
The documentation for this class was generated from the following file:

» Compensation.h

17.9 iMS::CompensationPointSpecification Class Reference

Completely specifies the desired compensation at a spot frequency.

#include <include/Compensation.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

76

Class Documentation

Constructor & Destructor

CompensationPointSpecification (CompensationPoint pt=CompensationPoint(), MHz f=50.0)

Constructor for CompensationPointSpecification Object.
~CompensationPointSpecification ()

Destructor for CompensationPointSpecification Object.
CompensationPointSpecification (const CompensationPointSpecification &)

Copy Constructor.
CompensationPointSpecification & operator= (const CompensationPointSpecification &)

Assignment Constructor.
bool operator== (CompensationPointSpecification const &rhs) const

Equality Operator.
void Freq (const MHz &f)

Sets the frequency (in MHz) at which the CompensationPointSpecification is valid.
const MHz & Freq ()

Gets the CompensationPointSpecification frequency.
void Spec (const CompensationPoint &pt)

Sets the specification data for this CompensationPointSpecification frequency point.
const CompensationPoint & Spec ()

Gets the specification data for this CompensationPointSpecification frequency point.

17.9.1 Detailed Description

Completely specifies the desired compensation at a spot frequency.

A CompensationPointSpecification object is the basic unit of a Compensation Function. It is required to know
the Frequency at which the specification is made and this frequency must fall within the frequency range of the
Synthesiser on which the resulting CompensationTable will be programmed else the specification will be disregarded
in the CompensationFunction calculation.

The calling software can program any of the Compensation parameters (amplitude, phase, synchronous analog or
digital) and the programmed value will be used to generate CompensationTable data by the CompensationFunction
calculation.

Author

Date

Since

Dave Cowan

2016-11-03

1.3

17.9.2 Constructor & Destructor Documentation

17.9.2.1 iMS::CompensationPointSpecification::CompensationPointSpecification (CompensationPoint pt =

CompensationPoint (), MHzf=50.0)

Constructor for CompensationPointSpecification Object.

Since

1.3

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.10 iMS::CompensationTable Class Reference 77

17.9.3 Member Function Documentation
17.9.3.1 bool iMS::CompensationPointSpecification::operator== (CompensationPointSpecification const & rhs) const

Equality Operator.

Since

1.3

The documentation for this class was generated from the following file:

» Compensation.h

17.10 iMS::CompensationTable Class Reference

A table of CompensationPoints storing look-up data that can be transferred to memory in the Synthesiser.
#include <include/Compensation.h>

Inheritance diagram for iMS::CompensationTable:

iMS::DequeBase< Compensation
Point >

iMS::CompensationTable

Collaboration diagram for iMS::CompensationTable:

iMS::DequeBase< Compensation
Point >

iMS::CompensationTable

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

78 Class Documentation

Public Member Functions

+ const bool Save (const std::string &fileName) const
Save Table contents to file using latest protocol version.

Constructors & Destructors

» CompensationTable ()

Default Constructor.
» CompensationTable (const IMSSystem &iMS)

Empty Constructor.
» CompensationTable (int LUTDepth, const MHz &lower_freq, const MHz &upper_freq)
» CompensationTable (const IMSSystem &iMS, const CompensationPoint &pt)
Fill Constructor.
+ CompensationTable (int LUTDepth, const MHz &lower_freq, const MHz &upper_freq, const
CompensationPoint &pt)
» CompensationTable (const IMSSystem &iMS, const std::string &fileName)
File Read Constructor.
» CompensationTable (int LUTDepth, const MHz &lower_freq, const MHz &upper_freq, const std::string

&fileName)
» CompensationTable (const IMSSystem &iMS, const int entry)

Non-volatile Memory Constructor.
» ~CompensationTable ()

Destructor.
» CompensationTable (const CompensationTable &)

Copy Constructor.
» CompensationTable & operator= (const CompensationTable &)

Assignment Constructor.

Helper Functions

+ const std::size_t Size () const

Returns the Number of Entries in the CompensationTable.
» const MHz FrequencyAt (const unsigned int index) const

Returns the frequency represented by a given entry in the CompensationTable.

Additional Inherited Members

17.10.1 Detailed Description

A table of CompensationPoints storing look-up data that can be transferred to memory in the Synthesiser.

A CompensationTable always contains a list of CompensationPoints whose length is defined by the available mem-
ory depth in an iMS Synthesiser to which the CompensationTable is targetted.

For this reason, a valid IMSSystem object is required to be passed as a const reference to the Constructor be-
cause the table will be initialised to the length of the Synthesiser's look-up memory (read from IMSSynthesiser::«
Capabilities::LUTDepth). Note that a dummy IMSSystem object could also be created with this field set to the LUT
depth (in bits, i.e. 12 => 4096 deep LUT). Once the CompensationTable has been constructed, the IMSSystem
object is no longer required and may be destroyed.

The length of the CompensationTable cannot be altered after construction.

The CompensationTable can be constructed with all entries initialised to zero, or to a default value. Subsequently,
random access is possible for both reading and modifying CompensationPoints, although a faster method for ac-
cessing contents is to use the iterators.

Each entry of a CompensationTable has a unique frequency associated with it. Although not part of the table
contents itself, it can be readily calculated from the upper and lower frequency bounds of the Synthesiser. A helper
function is available to do this calculation.

A CompensationTable may be saved to disk in a ".Iut' file. A Constructor also exists to read back from a previously
saved .lut file, creating a CompensationTable from the contents of the file.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.10 iMS::CompensationTable Class Reference 79

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.10.2 Constructor & Destructor Documentation
17.10.2.1 iMS::CompensationTable::CompensationTable ()

Default Constructor.

The default constructor should not normally be used by application code since the length of the table will be left
undefined. However it is a required constructor to complete the ImageProject class. If using, the new object should
then be assigned from another CompensationTable to ensure that it does not contain dangling pointers

Since

1.3

17.10.2.2 iMS::CompensationTable::CompensationTable (const IMSSystem & iMS)

Empty Constructor.

An IMSSystem object must be passed by const reference to the CompensationTable constructor in order to deter-
mine the correct depth of the LUT memory.

Parameters
in iMS | the IMSSystem object representing the system the CompensationTable will be
constructed for
Since
1.0

17.10.2.3 iMS::CompensationTable::CompensationTable (int LUTDepth, const MHz & lower_freq, const MHz & upper_freq)

This Explicit Empty Constructor makes it possible to create Compensation Tables without being physically connected
to an iMS System.

Parameters
in LUTDepth | the number of entries in the Compensation Look-Up Table
in lower_freq | the Lowest Frequency reproducible by the Synthesiser
in upper_freq | the Highest Frequency reproducible by the Synthesiser
Since
1.3

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

80 Class Documentation

17.10.2.4 iMS::CompensationTable::CompensationTable (const IMSSystem & iMS, const CompensationPoint & pt)

Fill Constructor.

Use this constructor to preload the CompensationTable with identical values of CompensationPoint

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.10 iMS::CompensationTable Class Reference 81

Parameters
in iMS | the IMSSystem object representing the system the CompensationTable will be
constructed for
in pt | The CompensationPoint that will fill each of the new elements of the
CompensationTable
Since
1.0

17.10.2.5 iMS::CompensationTable::CompensationTable (int LUTDepth, const MHz & lower_freq, const MHz & upper_freq,
const CompensationPoint & pt)

This Explicit Fill Constructor makes it possible to create Compensation Tables without being physically connected
to an iMS System.

Parameters
in LUTDepth | the number of entries in the Compensation Look-Up Table
in lower_freq | the Lowest Frequency reproducible by the Synthesiser
in upper_freq | the Highest Frequency reproducible by the Synthesiser
in pt | The CompensationPoint that will fill each of the new elements of the
CompensationTable
Since
1.3

17.10.2.6 iMS::CompensationTable::CompensationTable (const IMSSystem & ilMS, const std::string & fileName)

File Read Constructor.

Use this constructor to preload the CompensationTable with data read in from a file on disk

Parameters
in iMS | the IMSSystem object representing the system the CompensationTable will be
constructed for
in fileName | A string pointing to a 'x.lut' file on the filesystem containing preexisting
CompensationTable data
Since
1.0

17.10.2.7 iMS::CompensationTable::CompensationTable (int LUTDepth, const MHz & lower_freq, const MHz & upper_freq,
const std::string & fileName)

This Explicit File Read Constructor makes it possible to create Compensation Tables without being physically con-
nected to an iMS System.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

82 Class Documentation

Parameters

in LUTDepth | the number of entries in the Compensation Look-Up Table

in lower_freq | the Lowest Frequency reproducible by the Synthesiser

in upper_freq | the Highest Frequency reproducible by the Synthesiser

in fileName | A string pointing to a "x.lut' file on the filesystem containing preexisting
Since

1.3

17.10.2.8 iMS::CompensationTable::CompensationTable (const IMSSystem & iMS, const int entry)

Non-volatile Memory Constructor.

Use this constructor to preload the CompensationTable with data recalled from an entry in the Synthesiser File«
System.

Parameters
in iMS | the IMSSystem object representing the system the CompensationTable will be
constructed for
in entry | the entry in the FileSystem Table from which to recall a Compensation Table
CompensationTable data
Since
1.1

17.10.3 Member Function Documentation
17.10.3.1 const MHz iMS::CompensationTable::FrequencyAt (const unsigned int index) const

Returns the frequency represented by a given entry in the CompensationTable.
Each entry in the CompensationTable has an implied frequency at which it will become active.

Parameters

in index | The CompensationTable entry to retrieve the associated Frequency for

Returns

The Frequency value which the CompensationTable entry represents

Since

1.0

17.10.3.2 const bool iMS::CompensationTable::Save (const std::string & fileName) const

Save Table contents to file using latest protocol version.

The contents of this CompensationTable can be saved to disk for retrieval at a later time. Calling this function will
write out the contents of the table to a file which is opened at the filesystem location given by the string fileName.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.10 iMS::CompensationTable Class Reference 83

Warning

If the file already exists, it is overwritten, without warning.

If the function cannot create the file, it will not save the table, and return false.

fileName can be any valid filesystem location and any name, but we recommend the use of the file extension ".lut'

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

84 Class Documentation

Parameters

in fileName | the name and location of the file to write CompensationTable data to

Returns

true if the save operation completed successfully

Since

1.0

17.10.3.3 const std::size_t iMS::CompensationTable::Size () const

Returns the Number of Entries in the CompensationTable.

Returns

std::size_t representing the number of CompensationTable entries (which is defined in the Constructor)

Since

1.0

The documentation for this class was generated from the following file:

» Compensation.h

17.11 iMS::CompensationTableDownload Class Reference

Provides a mechanism for downloading and verifying Compensation Tables to a Synthesiser's Look-Up memory.
#include <include\Compensation.h>

Inheritance diagram for iMS::CompensationTableDownload:

iMS::IBulkTransfer

iMS::CompensationTableDownload

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.11 iMS::CompensationTableDownload Class Reference 85

Collaboration diagram for iMS::CompensationTableDownload:

iMS::IBulk Transfer
A

iMS::CompensationTableDownload

Public Member Functions

Constructor & Destructor

» CompensationTableDownload (IMSSystem &ims, const CompensationTable &tbl)

Constructor for CompensationTableDownload Object.
+ ~CompensationTableDownload ()

Destructor for CompensationTableDownload Object.

Bulk Transfer Initiation

* bool StartDownload ()

Initiates a Bulk Transfer download.
* bool StartVerify ()

Initiates a Bulk Transfer verify.

Retrieve Error Information

* int GetVerifyError ()
Returns the address of the next verify error or -1 if none.

Event Notifications

+ void CompensationTableDownloadEventSubscribe (const int message, IEventHandler xhandler)

Subscribe a callback function handler to a given CompensationEvents entry.
+ void CompensationTableDownloadEventUnsubscribe (const int message, const IEventHandler <handler)

Unsubscribe a callback function handler from a given CompensationEvents entry.

Store in Synthesiser Non-Volatile Memory

+ const FileSystemIndex Store (FileDefault def, const std::string &FileName) const
Store Table contents to non-volatile memory on the synthesiser.
17.11.1 Detailed Description
Provides a mechanism for downloading and verifying Compensation Tables to a Synthesiser's Look-Up memory.

Author

Dave Cowan

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

86 Class Documentation

Date
2015-11-11

Since

1.0

17.11.2 Constructor & Destructor Documentation

17.11.2.1 iMS::CompensationTableDownload::CompensationTableDownload (IMSSystem & ims, const
CompensationTable & tbl)

Constructor for CompensationTableDownload Object.

The pre-requisites for an CompensationTableDownload object to be created are: (1) - an IMSSystem object, repre-
senting the configuration of an iMS target to which the CompensationTable is to be downloaded. (2) - a complete
CompensationTable object to download to the iMS target.

CompensationTableDownload stores const references to both. This means that both must exist before the
CompensationTableDownload object, and both must remain valid (not destroyed) until the CompensationTable«
Download object itself is destroyed. Because they are stored as references, the IMSSystem and Compensation«
Table objects themselves may be modified after the construction of the CompensationTableDownload object.

Once constructed, the object can neither be copied or assigned to another instance.

Parameters
in ims | A const reference to the iIMS System which is the target for downloading the
Image
in tbl | A const reference to the CompensationTable which shall be downloaded to the
target
Since
1.0

17.11.3 Member Function Documentation

17.11.3.1 void iMS::CompensationTableDownload::CompensationTableDownloadEventSubscribe (const int message,
IEventHandler x handler)

Subscribe a callback function handler to a given CompensationEvents entry.

CompensationTableDownload can callback user application code when an event occurs in the download process.
Supported events are listed under CompensationEvents. The callback function must inherit from the IEventHandler
interface and override its EventAction() method.

Use this member function call to subscribe a callback function to an CompensationEvents entry. For the period
that a callback is subscribed, each time an event in CompensationTableDownload occurs that would trigger the
subscribed CompensationEvents entry, the user function callback will be executed.

Parameters
in message | Use the CompensationEvents::Event enum to specify an event to subscribe to
in handler | A function pointer to the user callback function to execute on the event trigger.
Since
1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.11 iMS::CompensationTableDownload Class Reference 87

17.11.3.2 void iMS::CompensationTableDownload::CompensationTableDownloadEventUnsubscribe (const int message, const
IEventHandler x handler)
Unsubscribe a callback function handler from a given CompensationEvents entry.

Removes all links to a user callback function from the Event Trigger map so that any events that occur in the
CompensationTableDownload object following the Unsubscribe request will no longer execute that function

Parameters
in message | Use the CompensationEvents::Event enum to specify an event to unsubscribe
from
in handler | A function pointer to the user callback function that will no longer execute on
an event
Since
1.0

17.11.3.3 int iMS::CompensationTableDownload::GetVerifyError () [virtual]

Returns the address of the next verify error or -1 if none.

After the application has been notified of a failed verify, it can probe the BulkTransfer derived object to obtain the
approximate address at which the BulkTransfer failed. The address is provided as a byte offset from the start of the
BulkTransfer binary object.

Due to the way in which the BulkTransfer mechanism splits the transfer into individual messages, there will be one
error recorded for each message that results in a verify fail. Therefore, the address will only be approximate, to the
nearest message size boundary and if there are multiple byte fails within the scope of a single message, only one
error will be recorded.

Calling this function repeatedly will result in returning the next recorded verify error. If there are no errors left, or the
transfer was successful (i.e. there were no verify failures recorded) the function will return -1.

Returns

byte address of transfer failure or -1 if none.

Since

1.0

Implements iMS::IBulkTransfer.

17.11.3.4 bool iMS::CompensationTableDownload::StartDownload () [virtual]

Initiates a Bulk Transfer download.

If the user has subscribed to the relevant event notifications, the BulkTransfer derived object will issue a completion
event at the end of the download process and will also warn the user anytime a download messaging error occurs.

Returns

Boolean indicating whether Download has started successfully

Since

1.0

Implements iMS::IBulkTransfer.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

88 Class Documentation

17.11.3.5 bool iMS::CompensationTableDownload::StartVerify () [virtuall]

Initiates a Bulk Transfer verify.

If the user has subscribed to the relevant event notifications, the BulkTransfer derived object will raise an event to
the application at the end of the verify process to indicate whether the verification was successful or not.

Returns

Boolean indicating whether Verify has started successfully

Since

1.0

Implements iMS::IBulkTransfer.

17.11.3.6 const FileSystemindex iMS::CompensationTableDownload::Store (FileDefault def, const std::string & FileName
) const

Store Table contents to non-volatile memory on the synthesiser.

The contents of this CompensationTable can be stored to an area of non-volatile memory on the Synthesiser for
retrieval at a future time, including after subsequent power cycles. The data stored can be used to select between
alternative CompensationTables (e.g. for different AOD crystal materials) without needing to recalculate or download
from Software.

The table can be flagged to be used as a default at startup in which case the Synthesiser will use the contents as a
default LUT program allowing the Synthesiser to be used with no connection to a host system.

Parameters
in def | mark the entry as a default and the Synthesiser will attempt to program the
data to the Local Tone Buffer on power up.
in FileName | a string to tag the download with in the File System Table (limited to 8 chars)
Returns

the index in the File System Table where the data was stored or -1 if the operation failed

Since

1.1

The documentation for this class was generated from the following file:

» Compensation.h

17.12 iMS::ConnectionList::ConnectionConfig Struct Reference

Controls the behaviour of a Connection Module during its discovery process.

#include <include\ConnectionList.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.12 iMS::ConnectionList::ConnectionConfig Struct Reference 89

Collaboration diagram for iMS::ConnectionList::ConnectionConfig:

std::basic_string<
char >

std::string

A

| elements
|

std::list< std::string >

A

| PortMask
|

iMS::ConnectionList
::ConnectionConfig

Public Member Functions

» ConnectionConfig (bool inc=true, std::list< std::string > mask=std::list< std::string >())

Public Attributes

* bool IncludelnScan
« std:list< std::string > PortMask

17.12.1 Detailed Description

Controls the behaviour of a Connection Module during its discovery process.

The ConnectionList class maintains an internal map of ConnectionConfig configuration structs, one per module
included in the ConnectionList.

Each Connection Module has a discovery mechanism which is invoked when the ConnectionList performs a scan.
Before calling the discovery function, the ConnectionList first checks the ConnectionConfigMap for details about
how the discovery function for that module should be configured. Firstly, it checks to see if the module should
be included in the scan, and only calls the discovery function if this is set to true. Secondly, a user supplied list
of strings is passed to the discovery functions which, if non-empty, acts as a mask, only permitting discovery on
interface ports that can be matched to an entry in the list. If the list is empty, all interface ports are queried.

Since

1.4.2

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

90 Class Documentation

17.12.2 Constructor & Destructor Documentation

17.12.2.1 iMS::ConnectionList::ConnectionConfig::ConnectionConfig (bool inc = t rue, std::list< std::string > mask =
std::1list< std::string > ())

Constructor for ConnectionConfig

Default Constructor enables scan on all available interface ports

17.12.3 Member Data Documentation
17.12.3.1 bool iMS::ConnectionList::ConnectionConfig::IncludelnScan

If true, the Connection Module associated with the ConnectionConfig is enabled for iMS discovery

17.12.3.2 std::list<std::string>> iMS::ConnectionList::ConnectionConfig::PortMask

A list of interfaces (ports) that may be queried. For example, an Ethernet Connection Module might include a
reference to a host static IP address that is known to reside on a network containing iMS devices (e.g. "192.168.«
1.100"). An application might know that it is expecting to find an iMS connected to Windows serial port COM8 so it
would add "COM8" to the PortMask. If the PortMask is empty, the module will iterate through every interface port
that is available to it.

The documentation for this struct was generated from the following file:

« ConnectionList.h

17.13 iMS::ConnectionList Class Reference

Creates iMS Connection Interfaces and scans them to discover available iMS Systems.

#include <include/ConnectionList.h>

Classes

« struct ConnectionConfig

Controls the behaviour of a Connection Module during its discovery process.

Public Types

* typedef std::map< std::string, ConnectionConfig > ConnectionConfigMap

Type of the internal object that links Connection Modules to their Configuration structs.

Public Member Functions

» ConnectionList ()

Constructor initialises the list with the connection types.
» ~ConnectionList ()

Destructor.

System Discovery

+ ConnectionConfigMap & config ()

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.13 iMS::ConnectionList Class Reference 91

Configure the Connection process to each supported Connection interface.
+ const std::list< std::string > & modules () const

Returns a list of string identifiers for each of the Connection Modules.
+ std::vector< IMSSystem > scan ()

Probe each of the known connection types for attached iMS Systems.

17.13.1 Detailed Description

Creates iMS Connection Interfaces and scans them to discover available iIMS Systems.

For software to interact with an iMS system, it must first discover it on one of the supported connection types, then
open a link to it.

The ConnectionList maintains a private list of modules for all the known supported connection types (USB, Ethernet,
etc.). Each connection module is stored as a pointer to an object within this list and implements a common interface
so that other code within the library can communicate with the iMS using the module and with no knowledge required
about what type of connection is used.

The list of supported module types enabled by the ConnectionList is dependent on which platform the host applica-
tion is operating on. To see which module types are supported, browse the list of modules returned by the call to
modules ():

auto& modules = connList->modules|();
fo (auto&& mname : connList->modules())
{
std::cout << "Module: " << mname << std::endl;

}

By default, all modules are enabled to scan for iIMS systems and the function call to scan () will attempt to open
a connection on every available port to the module. In this context, a "port" is a term used generically to refer to a
unigue point of access on which an iMS or multiple iMS's may be discovered. A module may have multiple ports.
For example, the CM_ETH connection module will have one port for each network interface on the system with each
interface port being recognised by its host IP address.

Application software can choose to limit the range of the ConnectionList::scan mechanism by only enabling the
modules on which the application is expecting to find IMS Systems. Within a single module, the scan can be
restricted further by adding a PortMask to the connection configuration. If a PortMask is defined, a module will only
scan the ports that are present within it. Limiting the scope of the ConnectionList::scan in either of these ways can
dramatically improve application startup time.

Once instantiated, ConnectionList can perform a scan, which starts a discovery algorithm on each of the available
enabled modules in turn. When complete, it will return an array (std::vector) of IMSSystem objects, each fully
populated with the iMS configuration, model, serial number etc.

Attention

It is important to understand that all communications to/from iMS hardware happens through the connection
module held in this list, therefore the ConnectionList object once created must be maintained within scope
until the software no longer needs to communicate with the iMS. Do not delete this object after the scan has
completed, unless you don't intend on communicating with the iMS!

#include "ConnectionList.h"
#include "IMSSystem.h"

using namespace iMS;

int main(int argc, char* argv)

{
// Create List of Connection Modules
ConnectionList* connList = new ConnectionList ();

// Get Connection List Configuration and list of modules supported on this platform
auto& conncfg = connList->config();
auto& modules = connList->modules|();

// Disable scan on serial port connection module
(std::find(modules.begin(), modules.end(), "CM_SERIAL") !=

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

92 Class Documentation

modules.end()) conncfg["CM_SERIAL"].IncludeInScan = false;
// Limit Ethernet Connection Module to only scan on host NIC with IP address 192.168.2.128
(std::find(modules.begin(), modules.end(), "CM_ETH") !=
modules.end()) conncfg["CM_ETH"].PortMask.push_back("192.168.2.128");

// Scan all enabled connection types for iMS systems and return an array of results
std::vector<IMSSystem> iMSList = connlList->scan();

// Our iMS object
IMSSystem myiMS;

for (std::vector<IMSSystem>::const_iterator iter = iMSList.begin(); iter != iMSList.end(); ++iter)
{
myiMS = (xiter);
// Look for the first iMS system that contains an iMSL type Controller
if (myiMS.Ctlr () .IsValid() && (myiMS.Ctlr() .Model == "iMSL")
{
reaky;

}

// None found

if (iter == iMSList.end())

{
std::cout << "No iMS found." << std::endl;
// Don’t forget to free the ConnectionList
delete connList;
eturn -1;

}

// Open the connection
myiMS.Connect () ;

std::cout << "Connecting to IMS System on port: " << myiMS.ConnPort () << std::endl;
// Do something with the iMS
// All done. Disconnect.

myiMS.Disconnect () ;

// Always free the ConnectionList memory after all iMS functions are complete and connections closed
delete connList;

return 0;

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.13.2 Member Function Documentation
17.13.2.1 ConnectionConfigMap& iMS::ConnectionList::config ()

Configure the Connection process to each supported Connection interface.

Returns a reference to the internal configuration map. When ConnectionList is constructed, it loads the map
with Keys, one for each Connection Module supported by the platform. The Value associated with each key is
a ConnectionConfig struct which by default enables iMS discovery on all available interface ports.

It is up to the user's application to restrict the scope of the scan by modifying the configuration as desired. Applica-
tions should not add Keys to or remove Keys from the configuration map.
Returns

Returns a reference to the internal Connection Configuration Map

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.14 iMS::DDSScriptDownload Class Reference 93

Since

1.4.2

17.13.2.2 const std::list<std::string>& iMS::ConnectionList::modules () const

Returns a list of string identifiers for each of the Connection Modules.

Each Connection Module has a unique string identifier. The string identifier is used as the "Key" in the Connection«—
ConfigMap. This function returns a list of all the Connection Modules supported by this platform.

Returns

Returns a const reference to a list of all supported Connection Modules

Since

1.4.2

17.13.2.3 std::vector<IMSSystem> iMS::ConnectionList::scan ()

Probe each of the known connection types for attached iMS Systems.

The scan () function iterates through the list of connection types, opening a port on each in an implementation
defined manner. On a successful open, it will send a sequence of query messages to identify if an iMS Controller
and/or an iMS Synthesiser(s) is present. If any of the query messages results in a valid response without timing out,
the function creates an IMSSystem object and begins populating the object with information it can find out about
it(them) either by sending further query messages to the device or by cross-referencing a hardware database built
into the library.

Once all connection types have been probed and all iIMS Systems discovered, the IMSSystem objects are loaded
into a vector which is returned for application processing.

Returns

Returns an array of discovered iMS Systems

Since

1.0

The documentation for this class was generated from the following file:

« ConnectionList.h

17.14 iMS::DDSScriptDownload Class Reference

Provides a mechanism for transferring DDS Scripts into Filesystem memory.

#include <includel\Auxiliary.h>

Public Member Functions

» DDSScriptDownload (IMSSystem &ims, const DDSScript &script)

Construct the DDSScriptDownload object from a reference to the iMS device and a const reference to the DDS Script
to download.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

94 Class Documentation

» ~DDSScriptDownload ()

DDSScriptDownload destructur.
« const FileSystemindex Program (const std::string &FileName, FileDefault def=FileDefault::NON_DEFAULT)
const

Causes the DDS Script object to be programmed into the filesystem.

17.14.1 Detailed Description

Provides a mechanism for transferring DDS Scripts into Filesystem memory.

Use this class to program newly created DDS Scripts to the Synthesiser. The class will automatically find and
allocate space in the filesystem and update the filesystem table with the newly created entry.

Setting the FileDefault flag to DEFAULT will cause the downloaded script to be executed at every subsequent
powerup.

Use the FileSystemManager class for any additional actions as required, such as setting/clearing default flags,
executing scripts and deleting unwanted scripts.

Author

Dave Cowan

Date
2016-03-01

Since

1.1

17.14.2 Constructor & Destructor Documentation
17.14.2.1 iMS::DDSScriptDownload::DDSScriptDownload (IMSSystem & ims, const DDSScript & script)

Construct the DDSScriptDownload object from a reference to the iMS device and a const reference to the DDS
Script to download.

Parameters
in ims | the iMS target System
in script | the DDSScript to download

17.14.3 Member Function Documentation

17.14.3.1 const FileSystemindex iMS::DDSScriptDownload::Program (const std::string & FileName, FileDefault def =
FileDefault::NON_DEFAULT) const

Causes the DDS Script object to be programmed into the filesystem.

Calculates the amount of storage space required, finds a space large enough and transfers the script byte data to
be stored at the selected location in Synthesiser non-volatile memory. The new entry is logged in the Filesystem
table (FST) along with the default flag, if set.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.15 iMS::DDSScriptRegister Class Reference 95

Parameters
in FileName | a max 8 char string to use to refer to the DDS Script (stored in the FST)
in def | Optional parameter indicating whether to set the default flag for future startup
execution
Returns

the index of the script in the FST (or -1 if programming failed, e.g. insufficient space or no free FST entries)

Since

1.1

The documentation for this class was generated from the following file:

 Auxiliary.h

17.15

iMS::DDSScriptRegister Class Reference

Create a register write to send to the DDS IC.

#include <includel\Auxiliary.h>

Public Types

e enu

Name::
Name::
Name::
Name::
Name::
Name::
Name::

m Name : std::uint8_t {

CSR =0, Name::FR1 =1, Name::FR2 = 2, Name::CFR = 3,

CFTWO = 4, Name::CPOWO = 5, Name::ACR = 6, Name::LSRR = 7,
RDW = 8, Name::FDW = 9, Name::CW1 = 10, Name::CW2 = 11,

CW3 =12, Name::CW4 = 13, Name::CW5 = 14, Name::CW6 = 15,
CW7 = 16, Name::CW8 = 17, Name::CW9 = 18, Name::CW10 = 19,
CW11 = 20, Name::CW12 = 21, Name::CW13 = 22, Name::CW14 = 23,
CW15 = 24, Name::UPDATE = 64 }

the abbreviated register name for each register accessible in the DDS IC

Public Member Functions

+ int append (const std::uint8_t &)

Add an additional byte to the end of the data array.
« std::vector< std::uint8_t > bytes () const

Const

Get the full byte array for programming to the FileSystem Shouldn't be called in user code.

ructor & Destructor

» DDSScriptRegister (Name name)

Constructor for DDSScriptRegister Object.

» DDSScriptRegister (Name name, const std::initializer_list< std::uint8_t > &data)
» DDSScriptRegister (const DDSScriptRegister &)

Copy Constructor.

» DDSScriptRegister & operator= (const DDSScriptRegister &)

Assignment Constructor.

» ~DDSScriptRegister ()

Destructor.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

96 Class Documentation

17.15.1 Detailed Description

Create a register write to send to the DDS IC.

The DDS IC that generates RF signals on the Synthesiser can be manually programmed to access advanced
features that wouldn't normally be available through the iMS API. To do this requires a knowledge and understanding
of the Analog Devices AD9959 Frequency Synthesiser IC and its register map.

If it is decided that it is necessary to manually program the AD9959, a sequence of register writes can be generated
(called a DDS Script) and stored in the Synthesiser Filesystem. The application software may then recall the script
from the filesystem and execute it to commit the register writes to the AD9959.

Each individual register write is an invocation of the DDSScriptRegister class. The class object consists of a key-
value pair where the key is the name of the register to access (corresponding to the register abbreviation in the
datasheet) and the value is a list of bytes to transfer to the AD9959 following the register command.

There must be the exact number of data bytes sent after the register command as specified in the datasheet. The
class knows internally what this number is and enforces it, so that any extra bytes are truncated and any missing
are zero-filled.

Note that the bottom four bits of data sent to the CSR register cannot be overwritten since they define the hardware
interface to the register access port.

Some of the register writes do not take effect until a signal line called Update Clock is asserted to the AD9959. This
can be triggered by creating a DDSScriptRegister object with the Name property set to UPDATE. It takes no byte
data as input.

Author

Dave Cowan

Date
2016-03-01

Since

1.1

17.15.2 Member Enumeration Documentation
17.15.2.1 enum iMS::DDSScriptRegister::Name : std::uint8_t [strong]
the abbreviated register name for each register accessible in the DDS IC

Since

1.1

Enumerator

CSR Channel Select Register.

FR1 Function Register 1.

FR2 Function Register 2.

CFR Channel Function Register.

CFTWO Channel Frequency Tuning Word.
CPOWO Channel Phase Offset Word.
ACR Amplitude Control Register.

LSRR Linear Sweep Ramp Rate.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.15 iMS::DDSScriptRegister Class Reference 97

RDW LSR Rising Delta Word.
FDW LSR Falling Delta Word.
CW1 Channel Word 1.

CW2 Channel Word 2.

CW3 Channel Word 3.

CW4 Channel Word 4.

CW5 Channel Word 5.

CW6 Channel Word 6.

CW7 Channel Word 7.

CW8 Channel Word 8.

CW9 Channel Word 9.
CW10 Channel Word 10.
CW11 Channel Word 11.
CW12 Channel Word 12.
CW13 Channel Word 13.
CW14 Channel Word 14.
CW15 Channel Word 15.
UPDATE Issue Update Clock (pseudo register write)

17.15.3 Constructor & Destructor Documentation

17.15.3.1 iMS::DDSScriptRegister::DDSScriptRegister (Name name)

Constructor for DDSScriptRegister Object.

Example:

DDSScriptRegister reg5(DDSScriptRegister: :Name: :UPDATE) ;

Parameters

in name \ Create the register object accessing the specified Register

Since

1.1

17.15.3.2 iMS::DDSScriptRegister::DDSScriptRegister (Name name, const std::initializer_list< std::uint8_t > & data)

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts. Example:

DDSScriptRegister reg2 (DDSScriptRegister::Name::CFTWO, {
0x33, 0x33, 0x33, 0x33 });

Parameters

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

98 Class Documentation

in name | Create the register object accessing the specified Register

in data | initialise the data byte array from this input field

17.15.4 Member Function Documentation
17.15.4.1 intiMS::DDSScriptRegister::append (const std::uint8_t &)

Add an additional byte to the end of the data array.

Returns

the new number of bytes in the array

Since

1.1

The documentation for this class was generated from the following file:

 Auxiliary.h

17.16 iMS::Degrees Class Reference

Type Definition for all operations that require an angle specification in degrees.

#include <include/IMSTypeDefs.h>

Public Member Functions

» Degrees (double arg)

Construct a Degrees object from a double argument and check its value is within the range 0.0 <= arg < 360.0. If
not, the object is still constructed, but the value is wrapped around to fit within the range.

» Degrees & operator= (double arg)

Assignment of a double argument in degrees to an existing Degrees object.
* operator double () const

Return a double representing the Degrees object's value.

Static Public Member Functions

« static unsigned int RenderAslmagePoint (const IMSSystem &, const Degrees)

Used internally by the library to convert a Degrees object into a hardware-dependent integer representation used by
the Image for RF Output phase.

« static unsigned int RenderAsCompensationPoint (const IMSSystem &, const Degrees)

Used internally by the library to convert a Degrees object into a hardware-dependent integer representation used by
the Compensation Table for channel phase increment.

« static unsigned int RenderAsCalibrationTone (const IMSSystem &, const Degrees)

Used internally by the library to convert a Degrees object into a hardware-dependent integer representation used by
the Calibration Tone for channel phase increment.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.16 iMS::Degrees Class Reference 99

17.16.1 Detailed Description

Type Definition for all operations that require an angle specification in degrees.

Internally, the Degrees value is stored as a double precision variable and is limited to sit within the range 0.0 <=
Percent < 360.0.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.16.2 Constructor & Destructor Documentation
17.16.2.1 iMS::Degrees::Degrees (doublearg) [inline]

Construct a Degrees object from a double argument and check its value is within the range 0.0 <= arg < 360.0. If
not, the object is still constructed, but the value is wrapped around to fit within the range.

Parameters

in arg | The percentage value

Since

1.0

17.16.3 Member Function Documentation
17.16.3.1 iMS::Degrees::operator double ()const [inline]

Return a double representing the Degrees object's value.

Since

1.0

17.16.3.2 Degrees& iMS::Degrees::operator=(doublearg) [inline]

Assignment of a double argument in degrees to an existing Degrees object.

The double argument of the assigner must be within the range 0.0 <= arg < 360.0 else it will be wrapped around
to fit within the range.

// needed for PI

#define _USE_MATH_DEFINES
#include <iostream>
#include <cmath>

Degrees phase = atan2(1.0, -1.0) = (360.0 / 2 = M_PI);

std::cout << "The arctangent for [x=-1, y=1] is " << phase << " degrees" << std::endl;
prints:
The arctangent for [x=-1, y=1] is 135.000000 degrees

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

100 Class Documentation

Since

1.0

17.16.3.3 static unsigned int iMS::Degrees::RenderAsCalibrationTone (const IMSSystem &, const Degrees)
[static]

Used internally by the library to convert a Degrees object into a hardware-dependent integer representation used
by the Calibration Tone for channel phase increment.

Not intended for use in application code

Since

1.1.0

17.16.3.4 static unsigned int iMS::Degrees::RenderAsCompensationPoint (const IMSSystem &, const Degrees)
[static]

Used internally by the library to convert a Degrees object into a hardware-dependent integer representation used
by the Compensation Table for channel phase increment.

Not intended for use in application code

17.16.3.5 static unsigned int iMS::Degrees::RenderAsimagePoint (const IMSSystem &, const Degrees) [static]

Used internally by the library to convert a Degrees object into a hardware-dependent integer representation used
by the Image for RF Output phase.

Not intended for use in application code

The documentation for this class was generated from the following file:

* IMSTypeDefs.h

17.17 iMS::DequeBase< T > Class Template Reference

Template Class encapsulating a deque object and acting as a base deque class for other classes in the library to
inherit from.

#include <include/Containers.h>

Public Member Functions

« void clear ()

clears the contents
« iterator insert (iterator pos, const T &value)

Inserts a single new element into the DequeBase.
* iterator insert (const_iterator pos, size_t count, const T &value)

Inserts multiple copies of an element into the DequeBase.
* iterator insert (iterator pos, const_iterator first, const_iterator last)

Inserts a range of elements into the DequeBase.
« void push_back (const T &value)

Appends the given element value to the end of the container.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.17 iMS::DequeBase< T > Class Template Reference

* void pop_back ()
Removes the last element of the container.
« void push_front (const T &value)
Prepends the given element value to the beginning of the container.
* void pop_front ()
Removes the first element of the container.
* iterator erase (iterator pos)

Removes the element at pos.
* iterator erase (iterator first, iterator last)

Removes the elements in the range [first; last].
* std::size_t size () const

Returns the number of elements in the container.

Constructors & Destructor

» DequeBase (const std::string &Name="[no name]", const std::time_t &modified_time=std::time(nullptr))

Create a default empty List with optional name.
~DequeBase ()

Destructor.

» DequeBase (size_t, const T &, const std::string &Name="[no name]", const std::time_t &modified_+«

time=std::time(nullptr))
Fill Constructor.

» DequeBase (const_iterator first, const_iterator last, const std::string &Name="[no name]", const std::time«

_t &modified_time=std::time(nullptr))
Range Constructor.
» DequeBase (const DequeBase &)

Copy Constructor.
+ DequeBase & operator= (const DequeBase &)

Assignment Constructor.

Element Access

» T & operator|] (int idx)

Random Write Access to an element in the Deque.
» const T & operator[] (int idx) const

Random Access to an element in the Deque.

DequeBase Unique Identifier

* bool operator== (DequeBase const &rhs) const

Equality Operator checks Deque object UUID's for equivalence.
 const std::array< std::uint8_t, 16 > GetUUID () const

Returns a vector representing the Unique Identifier assigned to the DequeBase object.

Timestamping

+ const std::time_t & ModifiedTime () const

Returns Time at which the Container was last modified.
+ std::string ModifiedTimeFormat () const

Returns Human-readable string for the time at which the Container was last modified.

Container Description

+ const std::string & Name () const

A string stored with the Container to aid human users in identifying its purpose.
+ std::string & Name ()

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

102 Class Documentation

lterator Specification

Use these iterators when you want to iteratively read through or update the entries stored within a DequeBase.
Iterators can be used to access elements at an arbitrary offset position relative to the element they point to.

Two types of iterators are supported; both are random access iterators. Dereferencing const_iterator yields a
reference to a constant entry in the DequeBase(const DequeBase&).

* typedef std::deque< T >:iterator iterator

Iterator defined for user manipulation of DequeBase.

« typedef std::deque< T >::const_iterator const_iterator
Const lterator defined for user readback of DequeBase.
« iterator begin ()
Returns an iterator pointing to the first element in the DequeBase container.

* iterator end ()

Returns an iterator referring to the past-the-end element in the DequeBase container.

» const_iterator begin () const

Returns a const_iterator pointing to the first element in the DequeBase container.

» const_iterator end () const

Returns a const _iterator referring to the past-the-end element in the DequeBase container.

 const_iterator cbegin () const

Returns a const_iterator pointing to the first element in the DequeBase container.

+ const_iterator cend () const

Returns a const_iterator referring to the past-the-end element in the DequeBase container.

17.17.1 Detailed Description
template <typename T>>class iMS::DequeBase< T >

Template Class encapsulating a deque object and acting as a base deque class for other classes in the library to
inherit from.

Date
2016-11-09

Since

1.3

17.17.2 Member Function Documentation
17.17.2.1 template<<typename T>> iterator iMS::DequeBase < T >::begin ()

Returns an iterator pointing to the first element in the DequeBase container.

Returns

An iterator to the beginning of the DequeBase container.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.17 iMS::DequeBase< T > Class Template Reference 103

17.17.2.2 template<typename T> const_iterator iMS::DequeBase< T >::begin () const

Returns a const_iterator pointing to the first element in the DequeBase container.

Returns

A DequeBase to the beginning of the DequeBase container.

Since

1.25

17.17.2.3 template<typename T> const_iterator iMS::DequeBase < T >::cbegin () const

Returns a const_iterator pointing to the first element in the DequeBase container.

Returns

A const_iterator to the beginning of the DequeBase container.

17.17.2.4 template<typename T> const_iterator iMS::DequeBase< T >::cend () const
Returns a const_iterator referring to the past-the-end element in the DequeBase container.

Returns

A const_iterator to the element past the end of the DequeBase.

17.17.2.5 template<typename T> void iMS::DequeBase < T >::clear ()
clears the contents

Since

1.3

17.17.2.6 template<typename T> iterator iMS::DequeBase< T >::end()

Returns an iterator referring to the past-the-end element in the DequeBase container.

The past-the-end element is the theoretical element that would follow the last element in the DequeBase container.
It does not point to any element, and thus shall not be dereferenced.

Because the ranges used by functions of the standard library do not include the element pointed by their closing
iterator, this function can be used in combination with DequeBase::begin to specify a range including all the elements
in the container.

Returns

An iterator to the element past the end of the DequeBase

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

104 Class Documentation

17.17.2.7 template<typename T> const_iterator iMS::DequeBase< T >::end () const
Returns a const_iterator referring to the past-the-end element in the DequeBase container.

Returns

A const_iterator to the element past the end of the DequeBase.

Since

1.25

17.17.2.8 template<typename T>> const std::array <std::uint8_t, 16> iMS::DequeBase< T >::GetUUID () const
Returns a vector representing the Unique Identifier assigned to the DequeBase object.

Returns

UUID as an array of uint8_t's

17.17.2.9 template<<typename T> iterator iMS::DequeBase < T >::insert (iterator pos, const T & value)
Inserts a single new element into the DequeBase.

Since

1.3

17.17.2.10 template<typename T>> const std::time_t& iMS::DequeBase< T >::ModifiedTime () const

Returns Time at which the Container was last modified.

Any time the container is modified (added to, deleted from, elements updated), the system time is recorded. This
happens coincident with the UUID if the container also being updated. This function returns to the user that times-
tamp.

Returns

a reference to a std::time_t representing the time at which the container was last modified

Since

1.3

17.17.2.11 template<typename T>> std::string iMS::DequeBase < T >::ModifiedTimeFormat () const
Returns Human-readable string for the time at which the Container was last modified.

Since

1.3

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.17 iMS::DequeBase< T > Class Template Reference 105

17.17.2.12 template<typename T> const std::string& iMS::DequeBase< T >::Name () const

A string stored with the Container to aid human users in identifying its purpose.

Updating the Container Name does not cause the Container UUID to change.

17.17.2.13 template<typename T> bool iMS::DequeBase < T >::operator== (DequeBase < T > const & rhs) const

Equality Operator checks Deque object UUID's for equivalence.

Each Deque object created in software has its own UUID (Universally Unique ID) assigned. In order to confirm
whether two deque objects are identical, their UUIDs are compared. Deque objects can also be compared with
Deques residing on iMS Controller hardware, since the UUID of a deque is stored in memory on the hardware.

Parameters

in rhs | A Deque object to perform the comparison with

Returns

True if the supplied Deque is identical to this one.

Since

1.0.1

17.17.2.14 template<typename T> T& iMS::DequeBase < T >::operator[] (int idx)

Random Write Access to an element in the Deque.

Parameters
in idx | Integer offset into the image with respect to the first element in the sequence
(DequeBase::begin())
Returns

A reference to an element.

Since

1.3

17.17.2.15 template<typename T> const T& iMS::DequeBase < T >::operator[] (int idx) const

Random Access to an element in the Deque.

The fastest and preferred method for reading back elements from a Dequeis to use const_iterator to retrieve el-
ements in sequence. In some circumstances however this is not suitable, and so the array subscript operator is
defined to permit applications to access an ImagePoint at any arbitrary position for readback.

Parameters

in idx | Integer offset into the image with respect to the first element in the sequence
(DequeBase::cbegin())

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

106 Class Documentation

Returns

A const reference to an element.

Since

1.0

The documentation for this class was generated from the following file:

» Containers.h

17.18 iMS::Diagnostics Class Reference

Provides a mechanism for retrieving diagnostics data about the attached iMS System.

#include <include\Diagnostics.h>

Public Types

« enum TARGET { TARGET::SYNTH, TARGET::AO_DEVICE, TARGET::RF_AMPLIFIER }

Sets which iMS device to request diagnostics data for.

» enum MEASURE {
MEASURE::FORWARD_POWER_CH1, MEASURE::FORWARD POWER_CH2, MEASURE::FORWAR+«
D POWER_CH3, MEASURE::FORWARD POWER CH4,
MEASURE::REFLECTED POWER _CH1, MEASURE::REFLECTED_POWER_CH2, MEASURE::REFLE«
CTED_POWER_CHS3, MEASURE::REFLECTED_POWER_CHA4,
MEASURE::DC_CURRENT_CH1, MEASURE:DC_CURRENT_CH2, MEASURE:DC_CURRENT_CHS3,
MEASURE::DC_CURRENT_CH4 }

Selects which diagnostics measurement to access.

Public Member Functions
Constructor & Destructor

 Diagnostics (const IMSSystem &ims)

Constructor for Diagnostics Object.
» ~Diagnostics ()

Destructor for Diagnostics Object.

Event Notifications

« void DiagnosticsEventSubscribe (const int message, |IEventHandler xhandler)

Subscribe a callback function handler to a given DiagnosticsEvents event.
+ void DiagnosticsEventUnsubscribe (const int message, const IEventHandler xhandler)

Unsubscribe a callback function handler from a given DiagnosticsEvents event.

Read Temperatures

* bool GetTemperature (const TARGET &tgt) const
Triggers a temperature reading from the target device.

Read Hours

* bool GetLoggedHours (const TARGET &tgt) const

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.18 iMS::Diagnostics Class Reference 107

Triggers a logged hours reading from the target device.

Get Diagnostics Information

* bool UpdateDiagnostics ()

Triggers a Diagnostics Conversion to read measurement data from the RF Power Amplifier.
+ const std::map< MEASURE, Percent > & GetDiagnosticsData () const

Returns a reference to the map of diagnostics data values currently stored by the Diagnostics class.

17.18.1 Detailed Description
Provides a mechanism for retrieving diagnostics data about the attached iMS System.

Author

Dave Cowan

Date
2016-03-08

Since

1.1

17.18.2 Member Enumeration Documentation
17.18.2.1 enum iMS::Diagnostics::MEASURE [strong]
Selects which diagnostics measurement to access.

Since

1.1

Enumerator

FORWARD_POWER_CH1 Forward Measured Power for Channel 1.
FORWARD_POWER_CH2 Forward Measured Power for Channel 2.
FORWARD POWER CH3 Forward Measured Power for Channel 3.
FORWARD_POWER_CH4 Forward Measured Power for Channel 4.
REFLECTED_POWER_CH1 Reflected Measured Power for Channel 1.
REFLECTED _POWER_CH2 Reflected Measured Power for Channel 2.
REFLECTED POWER CH3 Reflected Measured Power for Channel 3.
REFLECTED_POWER_CH4 Reflected Measured Power for Channel 4.
DC_CURRENT_CH1 Measured DC Current for Channel 1.
DC_CURRENT_CH2 Measured DC Current for Channel 2.
DC_CURRENT_CH3 Measured DC Current for Channel 3.
DC_CURRENT_CH4 Measured DC Current for Channel 4.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

108 Class Documentation

17.18.2.2 enum iMS::Diagnostics::TARGET [strong]

Sets which iMS device to request diagnostics data for.

Since

1.1

Enumerator
SYNTH Access the Synthesiser Diagnostics (Hours only)
AO_DEVICE Access the AO Device Diagnostics.
RF_AMPLIFIER Access the RF Amplifier Diagnostics.

17.18.3 Constructor & Destructor Documentation
17.18.3.1 iMS::Diagnostics::Diagnostics (const IMSSystem & ims)

Constructor for Diagnostics Object.

An IMSSystem object, representing the configuration of an iIMS target must be passed by const reference to the
Diagnostics constructor.

The IMSSystem object must exist before the Diagnostics object, and must remain valid (not destroyed) until the
Diagnostics object itself is destroyed.

Once constructed, the object can neither be copied or assigned to another instance.

Parameters

in ims | A const reference to the iMS System

Since

1.1

17.18.4 Member Function Documentation
17.18.4.1 void iMS::Diagnostics::DiagnosticsEventSubscribe (const int message, IEventHandler x handler)

Subscribe a callback function handler to a given DiagnosticsEvents event.

Diagnostics can callback user application code when an event occurs that affects the signal path. Supported events
are listed under DiagnosticsEvents. The callback function must inherit from the IEventHandler interface and override
its EventAction() method.

Use this member function call to subscribe a callback function to a DiagnosticsEvents event. For the period that a
callback is subscribed, each time an event in Diagnostics occurs that would trigger the subscribed Diagnostics«
Events event, the user function callback will be executed.

Parameters
in message | Use the DiagnosticsEvents::Event enum to specify an event to subscribe to
in handler | A function pointer to the user callback function to execute on the event trigger.
Since
1.1

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.18 iMS::Diagnostics Class Reference 109

17.18.4.2 void iMS::Diagnostics::DiagnosticsEventUnsubscribe (const int message, const IEventHandler x handler)

Unsubscribe a callback function handler from a given DiagnosticsEvents event.

Removes all links to a user callback function from the Event Trigger map so that any events that occur in the
Diagnostics object following the Unsubscribe request will no longer execute that function

Parameters
in message | Use the DiagnosticsEvents::Event enum to specify an event to unsubscribe
from
in handler | A function pointer to the user callback function that will no longer execute on
an event
Since
1.1

17.18.4.3 const std::map<MEASURE, Percent>& iMS::Diagnostics::GetDiagnosticsData () const

Returns a reference to the map of diagnostics data values currently stored by the Diagnostics class.

The map contains a set of key-value pairs representing the diagnostics data, one value per entry in the MEASURE
enum. Each value is represented as a percentage where 100% represents the full scale analog measured value.

Call UpdateDiagnostics() first to retrieve the latest measurements from the system.

The map of values will be updated after the UpdateDiagnostics() function call and before the DIAGNOSTICS_UP+
DATE_AVAILABLE event is fired so design the application to avoid accessing the map between these two timings
to prevent a potential race condition.

Returns

a reference to the diagnostics measurement map

Since

1.1

17.18.4.4 bool iMS::Diagnostics::GetLoggedHours (const TARGET & tgf) const

Triggers a logged hours reading from the target device.

Calling this function will read back the current logged hours count from the timing circuit built into the Synthesiser,
RF Power Amplifier or Acoust-Optic Device.

The function returns as soon as the request has been sent and a DiagnosticsEvents LoggedHours event will fire as
soon as the result returns so ensure that the user code has subscribed to the appropriate event first.

Parameters

in tgt \ Which of the connected devices to read logged hours data from

Returns

true if the logged hours request was sent successfully.

Since

1.1

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

110 Class Documentation

17.18.4.5 bool iMS::Diagnostics::GetTemperature (const TARGET & tgt) const

Triggers a temperature reading from the target device.

Calling this function will cause the Synthesiser to initiate a temperature conversion on either the RF Power Ampilifier
or the Acousto-Optic Device. There is no sensor built into the Synthesiser itself.

The function returns as soon as the conversion has been initiated and the result will become available in the
background, causing a DiagnosticsEvents TempUpdate event to fire so ensure that the user code has subscribed
to the appropriate event first.

Parameters

in fgt | Which of the connected devices to read temperature data from

Returns

true if the temperature conversion was initiated successfully.

Since

1.1

17.18.4.6 bool iMS::Diagnostics::UpdateDiagnostics ()

Triggers a Diagnostics Conversion to read measurement data from the RF Power Amplifier.

Calling this function will result in a new analog-to-digital conversion sequence being triggered in the diagnostics
circuit built into the RF Power Amplifier. This will result in updated values being made available for Forward power,
Reflected Power and DC Current across all 4 RF signal channels.

The function returns as soon as the request has been sent and a DiagnosticsEvents UpdateAvailable event will fire
as soon as the result returns so ensure that the user code has subscribed to the appropriate event first. If for any
reason the conversion was not able to be completed, a ReadFailed event will instead be returned

Returns

true if the update was initiated successfully.
Since

1.1

The documentation for this class was generated from the following file:

« Diagnostics.h

17.19 iMS::DiagnosticsEvents Class Reference

All the different types of events that can be triggered by the Diagnostics class.

#include <include\Diagnostics.h>

Public Types

» enum Events {
AOD_TEMP_UPDATE, RFA_TEMP_UPDATE, SYN_LOGGED_HOURS, AOD_LOGGED_HOURS,
RFA_LOGGED_HOURS, DIAGNOSTICS_UPDATE_AVAILABLE, DIAG_READ_FAILED, Count }

List of Events raised by the Diagnostics module.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.20 iMS::FAP Struct Reference 111

17.19.1 Detailed Description

All the different types of events that can be triggered by the Diagnostics class.

Some events contain floating point parameter data which can be processed by the IEventHandler::EventAction
derived method

Author

Dave Cowan

Date
2016-03-08

Since

1.1

17.19.2 Member Enumeration Documentation
17.19.21 enum iMS::DiagnosticsEvents::Events

List of Events raised by the Diagnostics module.

Enumerator
AOD_TEMP_UPDATE Received a temperature update from the Acousto-Optic device.
RFA_TEMP_UPDATE Received a temperature update from the RF Power Amplifier.
SYN_LOGGED_HOURS Returns the number of hours logged by the Synthesiser while powered up.

AOD_LOGGED HOURS Returns the number of hours logged by the Acousto-Optic Device while powered
up.

RFA_LOGGED_HOURS Returns the number of hours logged by the RF Power Amplifier while powered up.

DIAGNOSTICS UPDATE_AVAILABLE Indicates to the application that an update of diagnostics data is
available to be read.

DIAG_READ_FAILED Indicates that the update that was requested has failed to respond with updated re-
sults.

The documentation for this class was generated from the following file:

« Diagnostics.h

17.20 iMS::FAP Struct Reference

FAP (Frequency/Amplitude/Phase) triad stores the instantaneous definition of a single RF output.

#include <include/IMSTypeDefs.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

112 Class Documentation

Collaboration diagram for iMS::FAP:

iMS::Frequency

iMS::MHz iMS::Percent iMS::Degrees
—TI) ;4

N 7
N \freq jampl _ “phase
N | P 4
N
iMS::FAP

Public Member Functions

* FAP ()
Default construct a FAP object with zero data.
» FAP (double f, double a, double p)

Construct a FAP object from raw double precision input data.
* FAP (MHz f, Percent a, Degrees p)

Construct a FAP object from pre-existing MHz, Percent and Degrees objects.

Equality Operators

* bool operator== (const FAP &other) const

Equality operators compare FAPs against each other.
 bool operator!= (const FAP &other) const

Public Attributes

* MHz freq

The RF Channel Output Frequency.
» Percent ampl

The RF Channel Output Amplitude.
» Degrees phase

The RF Channel Output Phase.

17.20.1 Detailed Description

FAP (Frequency/Amplitude/Phase) triad stores the instantaneous definition of a single RF output.

The FAP struct, also known as a triad, stores one frequency (in MHz), one amplitude (Percent) and one phase
(Degrees) value which uniquely specifies the instantaneous output of any one RF channel output.

4 FAP's make up a single ImagePoint, one per RF channel, and sequences of ImagePoints then make up an Image.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.21 iMS::FileSystemManager Class Reference

113

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.20.2 Member Function Documentation
17.20.2.1 bool iMS::FAP::operator== (const FAP & other) const

Equality operators compare FAPs against each other.

Since

1.1.0
The documentation for this struct was generated from the following file:

* IMSTypeDefs.h

17.21 iMS::FileSystemManager Class Reference

Provides user management operations for working with Synthesiser FileSystems.

#include <include\FileSystem.h>

Public Member Functions

Constructor & Destructor

* FileSystemManager (IMSSystem &ims)

Constructor for FileSystemManager Object.
» ~FileSystemManager ()

Destructor for FileSystemManager object.

File System Operations

* bool Delete (FileSystemIndex index)

Removes the Entry indicated by the provided index from the FileSystemTable.
* bool Delete (const std::string &FileName)
* bool SetDefault (FileSystemindex index)
Tags a File for execution at Synthesiser startup.
* bool SetDefault (const std::string &FileName)
* bool ClearDefault (FileSystemIndex index)
Removes the Default Flag assigned to a FileSystemTableEntry.
* bool ClearDefault (const std::string &FileName)
* bool Sanitize ()
Reorganises the FileSystemTable and ensures it contains valid contents.

Miscellaneous Functions

* bool FindSpace (std::uint32_t &addr, const std::vector< std::uint8_t > &data) const
Locates an area in the FileSystem memory large enough to store the provided contents.
* bool Execute (FileSystemIndex index)
Causes the Synthesiser to access the FileSystem data represented by the index and execute it.
* bool Execute (const std::string &FileName)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

114 Class Documentation

17.21.1 Detailed Description

Provides user management operations for working with Synthesiser FileSystems.

Author

Dave Cowan

Date
2016-01-21

Since

1.1

17.21.2 Constructor & Destructor Documentation
17.21.2.1 iMS::FileSystemManager::FileSystemManager (IMSSystem & ims)

Constructor for FileSystemManager Object.

The FileSystemManager object requires an IMSSystem object, which will have had its FileSystemTable read back
during initialisation. It must therefore exist before the FileSystemManager object, and must remain valid (not de-
stroyed) until the FileSystemManager object itself is destroyed.

Once constructed, the object can neither be copied or assigned to another instance.

Parameters
in ims | A const reference to the iIMS System whose FileSystemTable is to be operated
upon.
Since
1.1

17.21.3 Member Function Documentation
17.21.3.1 bool iMS::FileSystemManager::ClearDefault (FileSystemindex index)

Removes the Default Flag assigned to a FileSystemTableEntry.
Parameters

in index | the Entry in the FST to unset as default (from 0 to MAX_FST_ENTRIES-1). \

Returns

true if the default flag was unset successfully

Since

1.1

17.21.3.2 bool iMS::FileSystemManager::ClearDefault (const std::string & FileName)

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts. Removes the tag indicating a file should be executed at startup referencing it by its allocated
filename

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.21 iMS::FileSystemManager Class Reference 115

Parameters

in FileName | a string representing the name of the file to unset as default

Returns

true if the filename was recognised and the default flag was unset successfully

Since

1.1

17.21.3.3 bool iMS::FileSystemManager::Delete (FileSystemIndex index)

Removes the Entry indicated by the provided index from the FileSystemTable.

The Entry is removed from the FST. The file data itself is not overwritten but once the entry has been deleted, it is
impractival to recover the FileSystem data subsequently. The space 'freed up' by the deletion will become available
for future file downloads and the release FST entry may be reused.

Bug Prior to v1.2.4 it was possible to attempt to delete an entry >= MAX_FST_ENTRIES. Doing so would have
generated an exception. The condition is now checked for and the function will fail (return false) if attempted.

Parameters

in index | the Entry in the FST to delete (from 0 to MAX_FST_ENTRIES-1).

Returns

true if the deletion process was carried out successfully

Since

1.1

17.21.3.4 bool iMS::FileSystemManager::Delete (const std::string & FileName)

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts. Deletes a file from the FileSystemTable referencing it by its allocated filename

Parameters

in \ FileName | a string representing the name of the file to delete

Returns

true if the filename was recognised and the deletion process was carried out successfully

Since

1.1

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

116 Class Documentation

17.21.3.5 bool iMS::FileSystemManager::Execute (FileSystemIndex index)

Causes the Synthesiser to access the FileSystem data represented by the index and execute it.

The execution of the FileSystem contents is defined in a FileSystemTypes specific way:

+ COMPENSATION_TABLE data is loaded into the Compensation Look-Up Table
+ TONE_BUFFER data is loaded into the Local Tone Buffer memory

+ DDS_SCRIPT data is written register at a time to the DDS IC (the User must ensure that no Image Data is
currently being played back to prevent unexpected behaviour)

+ USER_DATA no action is performed
Parameters

in index \ the Entry in the FileSystemTable to operate on

Returns

if the Execution was started successfully.

Since

1.1

17.21.3.6 bool iMS::FileSystemManager::Execute (const std::string & FileName)

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

Parameters

in \ FileName | a string representing the name of the file to operate on

Since

1.1

17.21.3.7 bool iMS::FileSystemManager::FindSpace (std::uint32_t & addr, const std::vector< std::uint8_t > & data) const

Locates an area in the FileSystem memory large enough to store the provided contents.

Given a const reference to a byte array containing the data which the caller wants to place in FileSystem memory,
this function operates an algorithm that will search through the FileSystemTable iteratively searching for the lowest
possible address in memory that will fit the data in a contiguous block (since the FileSystem does not support
distributed storage).

Parameters

out addr | The location in memory where the data may be safely stored

in data | areference to a byte array representing the data which is to be stored
Returns

true if the algorithm was successful, false if no space could be found

Since

1.1

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.21 iMS::FileSystemManager Class Reference 117

17.21.3.8 bool iMS::FileSystemManager::Sanitize ()

Reorganises the FileSystemTable and ensures it contains valid contents.

The Sanitize process will do the following:

« ensure only one default flag is set per filetype, clearing the flag set on any subsequent entries
« check that valid filesystem contents is present for each entry
* look for any filesystem contents that may overlap, removing entries that are aliased

* Reorders the FST according to FileSystemTypes with any default marked entries placed at the front

Returns

true if the process completed successfully

Since

1.1

17.21.3.9 bool iMS::FileSystemManager::SetDefault (FileSystemindex index)

Tags a File for execution at Synthesiser startup.

A single file of each file type may be marked as being the 'default’ of its type. If tagged as such, the Synthesiser
will attempt to execute the file during its initialisation process. All file types except USER_DATA may have a default
entry.

If multiple files are marked as default, the entry with the lowest index number will take precedence. Any subsequent
files marked as default will have their flags cleared during initialisation.

Parameters

] in \ index | the Entry in the FST to mark as default (from 0 to MAX_FST_ENTRIES-1).

Returns

true if the default flag was set successfully

Since

1.1

17.21.3.10 bool iMS::FileSystemManager::SetDefault (const std::string & FileName)

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts. Tags a File for execution at Synthesiser startup referencing it by its allocated filename

Parameters

in \ FileName | a string representing the name of the file to mark default

Returns

true if the filename was recognised and the default flag was set successfully

Since

1.1
The documentation for this class was generated from the following file:

* FileSystem.h

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

118 Class Documentation

17.22 iMS::FileSystemTableEntry Struct Reference

Contains all the parameters that uniquely locate a File within the Synthesiser FileSystem.

#include <include\FileSystem.h>

Public Member Functions
Constructor & Destructor

* FileSystemTableEntry ()

Empty Constructor for FileSystemTableEntry Object.
* FileSystemTableEntry (FileSystemTypes type, std::uint32_t addr, std::uint32_t length, FileDefault def)

Constructor for FileSystemTableEntry Object with no FileName specified.
+ FileSystemTableEntry (FileSystemTypes type, std::uint32_t addr, std::uint32_t length, FileDefault def, std«
::string name)
Full Constructor for FileSystemTableEntry Object with FileName.
» ~FileSystemTableEntry ()
Destructor for FileSystemTableEntry.
+ FileSystemTableEntry (const FileSystemTableEntry &)
Copy Constructor.
+ FileSystemTableEntry & operator= (const FileSystemTableEntry &)

Assignment Constructor.

FileSystemTable entry parameter readback

const FileSystemTypes Type () const
+ const std::uint32_t Address () const
+ const std::uint32_t Length () const
const bool IsDefault () const

const std::string Name () const

17.22.1 Detailed Description

Contains all the parameters that uniquely locate a File within the Synthesiser FileSystem.

A FileSystemTableEntry object stores the length, address, file type, file name and default flag status of any file
stored within the Synthesiser FileSystem.

It is not normally necessary for the user application to create a FileSystemTableEntry object since this will be
handled by the individual File Writing method (e.g. CompensationTableDownload::Store()), by the FileSystem«
Manager or during IMSSytem initialisation. However the struct is useful for reading parameter data about a file
entry in the table using the various const methods.

Author

Dave Cowan

Date
2016-01-20

Since

1.1

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.22 iMS::FileSystemTableEntry Struct Reference

17.22.2 Constructor & Destructor Documentation
17.22.2.1 iMS::FileSystemTableEntry::FileSystemTableEntry ()

Empty Constructor for FileSystemTableEntry Object.

Since

1.1

17.22.2.2 iMS::FileSystemTableEntry::FileSystemTableEntry (FileSystemTypes type, std::uint32_t addr, std::uint32_t
length, FileDefault def)

Constructor for FileSystemTableEntry Object with no FileName specified.

Parameters

in type | File Type of table entry

in addr | Address in FileSystem where table entry is stored

in length | number of bytes occupied by file in FileSystem

in def | Flag indicating whether File should be executed at startup
Since

1.1

17.22.2.3 iMS::FileSystemTableEntry::FileSystemTableEntry (FileSystemTypes type, std::uint32_t addr, std::uint32_t
length, FileDefault def, std::string name)

Full Constructor for FileSystemTableEntry Object with FileName.

Parameters

in type | File Type of table entry

in addr | Address in FileSystem where table entry is stored

in length | number of bytes occupied by file in FileSystem

in def | Flag indicating whether File should be executed at startup

in name | 8-character string given to table entry describing the contents of the file
Since

1.1

17.22.3 Member Function Documentation

17.22.3.1 const std::uint32_t iMS::FileSystemTableEntry::Address () const

Returns

Address in FileSystem memory of table entry

17.22.3.2 const bool iMS::FileSystemTableEntry::IsDefault () const

Returns

true if entry is marked for execution at startup

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

120 Class Documentation

17.22.3.3 const std::uint32_t iMS::FileSystemTableEntry::Length () const

Returns

Length in bytes occupied in memory of table entry

17.22.3.4 const std::string iMS::FileSystemTableEntry::Name () const

Returns

string representing descriptive file name given to table entry

17.22.3.5 const FileSystemTypes iMS::FileSystemTableEntry::Type () const

Returns

File Type of table entry

The documentation for this struct was generated from the following file:

+ FileSystem.h

17.23 iMS::FileSystemTableViewer Class Reference

Provides a mechanism for viewing the FileSystemTable associated with an iMS System.

#include <include\FileSystem.h>

Public Member Functions
Constructor

+ FileSystemTableViewer (const IMSSystem &ims)
Constructor for FileSystemTableViewer Object.

FileSystem Table Information
+ const bool IsValid () const

Indicates whether FileSystemTable object is valid.
+ const int Entries () const

Array operator for random access to FileSystemTableEntry s
+ const FileSystemTableEntry operator[] (const std::size_t idx) const
The FileSystemTable consists of a container of FileSysteTableEntry objects. Each object may be accessed by
calling the viewer object through an array subscript.

Friends

+ LIBSPEC std::ostream & operator< < (std::ostream &stream, const FileSystemTableViewer &)

Stream operator overload to simplify debugging.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.23 iMS::FileSystemTableViewer Class Reference 121

17.23.1 Detailed Description
Provides a mechanism for viewing the FileSystemTable associated with an iMS System.

Author

Dave Cowan

Date
2016-01-21

Since

1.1

17.23.2 Constructor & Destructor Documentation
17.23.2.1 iMS::FileSystemTableViewer::FileSystemTableViewer (const IMSSystem & ims) [inline]

Constructor for FileSystemTableViewer Object.

The FileSystemTableViewer object requires an IMSSystem object, which will have had its FileSystemTable read
back during initialisation. It must therefore exist before the FileSystemTableViewer object, and must remain valid
(not destroyed) until the FileSystemTableViewer object itself is destroyed.

Once constructed, the object can neither be copied or assigned to another instance.

Parameters

] in ims | A const reference to the iIMS System whose FileSystemTable is to be viewed.

Since

1.1

17.23.3 Member Function Documentation

17.23.3.1 const int iMS::FileSystemTableViewer::Entries () const

Returns

The current number of file entries stored in the FileSystemTable

Since

1.1

17.23.3.2 const bool iMS::FileSystemTableViewer::IsValid () const

Indicates whether FileSystemTable object is valid.

For a FileSystemTable stored on the Synthesiser to be considered valid, certain parameters need to be met. If the
initialisation process is unable to establish validity of a FileSystemTable it will mark it as void and the user will not
be able to work with it until a new FileSystem has been created and downloaded.

User code should therefore check that the FileSystemTable is valid before working with it.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

122 Class Documentation

Returns

true if the FileSystemTable is considered valid.

Since

1.1

17.23.3.3 const FileSystemTableEntry iMS::FileSystemTableViewer::operator[] (const std::size_t idx) const

The FileSystemTable consists of a container of FileSysteTableEntry objects. Each object may be accessed by
calling the viewer object through an array subscript.

For example:

FileSystemTableViewer fstv (myiMS) ;
(fstv.Isvalid()) {
int length = 0;
for (int i=0; i<fstv.Entries(); i++) {
length += fstv[i].Length();
}

std::cout << "Used space in filesystem: " << length << " bytes" << std::endl;

Since

1.1

17.23.4 Friends And Related Function Documentation
17.23.4.1 LIBSPEC std::ostreamé& operator<< < (std::ostream & stream, const FileSystemTableViewer &) [friend]

Stream operator overload to simplify debugging.

Example usage:

FileSystemTableViewer fstv (myiMS) ;
if (!fstv.Isvalid()) {
std::cout << "No Filesystem found" << std::endl;
}
else {
std::cout << fstv;

might produce the result:

FST[00]* : Type 1 Addr : 8708 Len : 16386 Name : CompTbll
FST[01] : Type 1 Addr : 38924 Len : 16386 Name : CompTbl2
FST[02]% : Type 2 Addr : 1024 Len : 6146 Name : ToneUp
FST[03] : Type 2 Addr : 25094 Len : 6146 Name : ToneDown
FST[04] : Type 15 Addr : 55310 Len : 1538 Name : User5
FST[05] : Type 15 Addr : 56848 Len : 1538 Name : Userb
FST[06] : Type 3 Addr : 7170 Len : 17 Name : DDS100M

where The index into the FileSystemTable (FST) is given followed by an asterisk if the entry is marked as Default
(Execute on startup). Then the File Type is given (refer to FileSystemTypes), followed by the starting address in
memory then the number of bytes occupied and finally the allocated filename.

The documentation for this class was generated from the following file:

* FileSystem.h

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.24 iMS::Frequency Class Reference 123

17.24 iMS::Frequency Class Reference

Type Definition for all operations that require a frequency specification.
#include <include/IMSTypeDefs.h>

Inheritance diagram for iMS::Frequency:

iMS::Frequency

iMS::kHz iMS::MHz

Public Member Functions

» Frequency (double arg=0.0)

Construct a Frequency object from a double argument representing Hertz.
» Frequency & operator= (double arg)

Assignment of a double argument in Hertz to an existing Frequency object.
+ operator double () const

Return a double representing the Frequency value in Hertz.

Static Public Member Functions

+ static unsigned int RenderAsPointRate (const IMSSystem &, const Frequency, const bool Prescaler«
Disable=false)

Used internally by the library to convert a Frequency object into an hardware-dependent integer representation used
by the Image for Internal Oscillator frequency.

17.24.1 Detailed Description

Type Definition for all operations that require a frequency specification.

Internally, the Frequency value is stored as a double precision variable specified in Hertz

Author

Dave Cowan

Date
2015-11-03

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

124 Class Documentation

17.24.2 Constructor & Destructor Documentation
17.24.2.1 iMS::Frequency::Frequency (doublearg=0.0) [inline]

Construct a Frequency object from a double argument representing Hertz.

Parameters

in arg | Frequency in Hertz

Since

1.0

17.24.3 Member Function Documentation
17.24.3.1 iMS::Frequency::operator double ()const [inline]

Return a double representing the Frequency value in Hertz.

kHz £1(1.2);

Frequency f2 = f1();

std::cout << "f2’s Frequency is: " << f2() << "Hz" << std::endl;
prints:

f2’s Frequency is 1200.0Hz

Since

1.0

17.24.3.2 Frequency& iMS::Frequency::operator=(doublearg) [inline]
Assignment of a double argument in Hertz to an existing Frequency object.

Frequency f£f;
f = 1000.0;
// £ contains 1000Hz

Since

1.0

17.24.3.3 static unsigned int iMS::Frequency::RenderAsPointRate (const IMSSystem &, const Frequency, const bool
PrescalerDisable = false) [static]

Used internally by the library to convert a Frequency object into an hardware-dependent integer representation used
by the Image for Internal Oscillator frequency.

Not intended for use in application code

The documentation for this class was generated from the following file:

* IMSTypeDefs.h

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.25 iMS::FWVersion Struct Reference 125

17.25 iMS::FWVersion Struct Reference

Stores the version number of firmware running on iMS hardware.

finclude <include/IMSSystem.h>

Public Attributes

« int major { -1}
returns the Major firmware version number (or -1 if uninitialised)
* int minor { 0}
returns the Minor firmware version number
* intrevision {0}
returns the firmware revision number
« struct std::tm build_date

returns a struct indicating the date on which the firmware was created

Friends

» LIBSPEC std::ostream & operator< < (std::ostream &stream, const FWVersion &)
Use this operator overload to output to a console the firmware version in human-readable format.
17.25.1 Detailed Description

Stores the version number of firmware running on iMS hardware.
Firmware version is always defined as 'M.m.r' where: M = Major Version m = Minor Version r = Revision

Revision increments continuously for each build of firmware that is created. Major and Minor tags are only updated
to mark an important release.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.25.2 Friends And Related Function Documentation
17.25.2.1 LIBSPEC std::ostream& operator<< < (std::ostream & stream, const FWVersion &) [friend]

Use this operator overload to output to a console the firmware version in human-readable format.

For example:

std::cout << " FW Version: " << myiMS.Ctlr () .GetVersion() << std::endl;

might print:

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

126 Class Documentation

FW Version: 1.0.23 Wed 23 September 2015 11:08 GMT

The documentation for this struct was generated from the following file:

+ IMSSystem.h

17.26 iMS::IBulkTransfer Class Reference

Interface Specification class for sending large binary data objects to the iMS.
#include <include/IBulkTransfer.h>

Inheritance diagram for iMS::1BulkTransfer:

iMS::IBulk Transfer

iMS::CompensationTableDownload | | iMS::ImageDownload | | iMS:: ToneBufferDownload

Public Member Functions

« virtual bool StartDownload ()=0

Initiates a Bulk Transfer download.
« virtual bool StartVerify ()=0

Initiates a Bulk Transfer verify.
« virtual int GetVerifyError ()=0

Returns the address of the next verify error or -1 if none.

17.26.1 Detailed Description

Interface Specification class for sending large binary data objects to the iMS.

There are several instances in which large binary data must be transferred either from the host to the iMS or in
the other direction, e.g. download of image data, compensation tables etc. This is known as Bulk Transfer and it
implements a background process that supervises the splitting up of large data objects into individual messages
compatible with the communications module, queuing them for transfer, verifying the success or failure of the transfer
and reporting to the application software when the transfer is complete.

This interface class defines the methods which application software may use to control the Bulk Transfer process.
It is inherited by API classes that require the use of a Bulk Transfer, and which implement the Bulk Transfer mecha-
nism.

Completion and success or failure of a Bulk Transfer are indicated by the |IEventHandler mechanism, which must be
implemented by the derivative class
Author

Dave Cowan

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.26 iMS::IBulkTransfer Class Reference 127

Date
2015-11-03

Since

1.0

17.26.2 Member Function Documentation
17.26.2.1 virtual int iMS::IBulkTransfer::GetVerifyError () [pure virtual]

Returns the address of the next verify error or -1 if none.

After the application has been notified of a failed verify, it can probe the BulkTransfer derived object to obtain the
approximate address at which the BulkTransfer failed. The address is provided as a byte offset from the start of the
BulkTransfer binary object.

Due to the way in which the BulkTransfer mechanism splits the transfer into individual messages, there will be one
error recorded for each message that results in a verify fail. Therefore, the address will only be approximate, to the
nearest message size boundary and if there are multiple byte fails within the scope of a single message, only one
error will be recorded.

Calling this function repeatedly will result in returning the next recorded verify error. If there are no errors left, or the
transfer was successful (i.e. there were no verify failures recorded) the function will return -1.

Returns

byte address of transfer failure or -1 if none.

Since

1.0

Implemented in iMS::CompensationTableDownload, iMS::ToneBufferDownload, and iMS::ImageDownload.

17.26.2.2 virtual bool iMS::IBulkTransfer::StartDownload () [pure virtual]

Initiates a Bulk Transfer download.

If the user has subscribed to the relevant event notifications, the BulkTransfer derived object will issue a completion
event at the end of the download process and will also warn the user anytime a download messaging error occurs.

Returns

Boolean indicating whether Download has started successfully
Since
1.0

Implemented in iMS::CompensationTableDownload, iMS::ToneBufferDownload, and iMS::ImageDownload.

17.26.2.3 virtual bool iMS::IBulkTransfer::StartVerify () [pure virtual]

Initiates a Bulk Transfer verify.

If the user has subscribed to the relevant event notifications, the BulkTransfer derived object will raise an event to
the application at the end of the verify process to indicate whether the verification was successful or not.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

128 Class Documentation

Returns

Boolean indicating whether Verify has started successfully

Since

1.0

Implemented in iMS::CompensationTableDownload, iMS::ToneBufferDownload, and iMS::ImageDownload.

The documentation for this class was generated from the following file:

« |BulkTransfer.h

17.27 iMS::IEventHandler Class Reference

Interface Class for an Event Handler to be defined in User Code and subscribed to library events.

#include <include/IEventHandler.h>

Public Member Functions

+ |[EventHandler ()

Default Constructor.
« virtual ~IEventHandler ()

Virtual Destructor.
* bool operator== (const IEventHandler e)

Used internally to identify Functions subscribed to Events. Not intended for Application usage.

Overrideable User Action on Event

« virtual void EventAction (void xsender, const int message, const int param=0)
This Method must be overriden by a User derived callback class.
« virtual void EventAction (void xsender, const int message, const int param, const int param2)
This Method must be overriden by a User derived callback class.
« virtual void EventAction (void xsender, const int message, const double param)
This Method must be overriden by a User derived callback class.
« virtual void EventAction (void xsender, const int message, const int param, const std::vector< std::uint8_t
> data)
This Method must be overriden by a User derived callback class.

17.27.1 Detailed Description

Interface Class for an Event Handler to be defined in User Code and subscribed to library events.

Note that it is not possible to subscribe a single derived class to multiple events from different source objects in the
library (as in a system-wide message handler) because the message enum integer values overlap each other. This
is a conscious design choice to encourage encapsulation. A class may still be subscribed to multiple events as long
as they are triggered from the same source object.

Example:

class ImageVerifySupervisor : public IEventHandler
{
private:
bool m_verifying{ true };
public:
void EventAction(voidx sender, const int message, const int param)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.27 iMS::IEventHandler Class Reference 129

witch (message)
{
(ImageDownloadEvents: :VERIFY_SUCCESS) : std::cout << "Image
Verify Successful!" << std::endl; m_verifying = false; ;
e (ImageDownloadEvents::VERIFY_FAIL) : std::cout << "Image

Verify FAILED!" << std::endl; m_verifying = false; break;
}
}
bool Busy () const { g m_verifying; };
bi

The above code snippet defines a class "ImageVerifySupervisor" that inherits from the IEventHandler base class.
This is used during the download of an Image to the Controller to determine whether the verification of the download
was successful or not.

The class contains a private boolean variable which is initialised to true. It overrides the EventAction interface class
method to do something when the VERIFY_SUCCESS and VERIFY_FAIL events are raised. User code can read
the Busy() function to determine whether the downloader is still in the process of verifying the download or whether
it has finished (which is assumed to be the case once either of the 2 events are received).

To use the class, the application code creates an ImageVerifySupervisor object at the same time as starting a
verify on an ImageDownload. It then links the object to the ImageDownload by calling the Subscribe() method
for both ImageDownloadEvents::VERIFY_SUCCESS and ImageDownloadEvents::VERIFY_FAIL, passing to the
method the address of the ImageVerifySupervisor object as a function pointer.

ImageDownload * dl = new ImageDownload(ims, img);
ImageVerifySupervisor vs;
dl->ImageDownloadEventSubscribe (ImageDownloadEvents: :VERIFY_SUCCESS, &
vs);
dl->ImageDownloadEventSubscribe (ImageDownloadEvents: :VERIFY_FAIL, &vs);
dl->StartVerify();
while (vs.Busy()) {
std::this_thread::sleep_for (std::chrono::milliseconds (50));
}
dl->ImageDownloadEventUnsubscribe (ImageDownloadEvents: :VERIFY_SUCCESS,
&vs) ;

dl->ImageDownloadEventUnsubscribe (ImageDownloadEvents: :VERIFY_FAIL, &vs);
delete dl;

When the verify completes, it will trigger either the VERIFY_SUCCESS or VERIFY_FAIL events which, through the
library's event handling mechanism, will identify the subscribed function and call the EventAction method.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.27.2 Member Function Documentation

17.27.2.1 virtual void iMS::IEventHandler::EventAction (void x« sender, const int message, const int param =0)
[virtual]

This Method must be overriden by a User derived callback class.

When a user class derived from |IEventHandler is subscribed to receive event notifications from the iMS Library, it
is this function that is always called when the event is raised. Therefore it is essential to override this method to
process the event and to do something with it.

This overloaded callback function provides integer parameter data to user code.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

130 Class Documentation

Parameters
in sender | A pointer to the class that triggers the event callback. Can be used to obtain
additional information.
in message | an integer that maps to an enum in the Events class associated with the call-
back subscription
in param | an optional integer parameter that provides additional information on the call-
back event.
Since
1.0

17.27.2.2 virtual void iMS::IEventHandler::EventAction (void * sender, const int message, const int param, const int param2)
[virtual]

This Method must be overriden by a User derived callback class.

When a user class derived from IEventHandler is subscribed to receive event notifications from the iMS Library, it
is this function that is always called when the event is raised. Therefore it is essential to override this method to
process the event and to do something with it. This overloaded callback function provides integer parameter data to
user code.

Parameters
in sender | A pointer to the class that triggers the event callback. Can be used to obtain
additional information.
in message | an integer that maps to an enum in the Events class associated with the call-
back subscription
in param | aninteger parameter that provides additional information on the callback event.
in paramZ2 | an optional integer parameter that provides further additional information on
the callback event.
Since
1.2

17.27.2.3 virtual void iMS::IEventHandler::EventAction (void * sender, const int message, const double param)
[virtual]

This Method must be overriden by a User derived callback class.

When a user class derived from |IEventHandler is subscribed to receive event notifications from the iMS Library, it
is this function that is always called when the event is raised. Therefore it is essential to override this method to
process the event and to do something with it.

This overloaded callback function provides floating point parameter data to user code.

Parameters
in sender | A pointer to the class that triggers the event callback. Can be used to obtain
additional information.
in message | an integer that maps to an enum in the Events class associated with the call-
back subscription

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.28 iMS::Image Class Reference 131

in param | an floating point parameter that provides additional information on the callback
event.

Since

1.1

17.27.2.4 virtual void iMS::IEventHandler::EventAction (void * sender, const int message, const int param, const
std::vector< std::uint8_t > data) [virtual]

This Method must be overriden by a User derived callback class.

When a user class derived from IEventHandler is subscribed to receive event notifications from the iMS Library, it
is this function that is always called when the event is raised. Therefore it is essential to override this method to
process the event and to do something with it.

This overloaded callback function provides a vector of byte data to user code.

Parameters
in sender | A pointer to the class that triggers the event callback. Can be used to obtain
additional information.
in message | an integer that maps to an enum in the Events class associated with the call-
back subscription
in param | an integer parameter that provides information on the callback event.
in data | a byte vector parameter that provides additional information on the callback
event.
Since
1.2

17.27.2.5 bool iMS::IEventHandler::operator==(const IEventHandler e)

Used internally to identify Functions subscribed to Events. Not intended for Application usage.

Since

1.0

The documentation for this class was generated from the following file:

« |EventHandler.h

17.28 iMS::Image Class Reference

A sequence of ImagePoints played out sequentially by the Controller and driven by the Synthesiser.

#include <include/Image.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

132

Class Documentation

Inheritance diagram for iMS::lmage:

iMS::DequeBase< ImagePoint >

iMS::Image

Collaboration diagram for iMS::Image:

iMS::DequeBase< ImagePoint >

iMS::Image

Public Member Functions

Constructors & Destructors

» Image (const std::string &name="")

Empty Constructor.
Image (size_t nPts, const ImagePoint &pt, const std::string &name="")

Fill Constructor.

Image (size_t nPts, const ImagePoint &pt, const Frequency &f, const std::string &nhame="")
Fill Constructor with Internal Clock Initialisation.

Image (size_t nPts, const ImagePoint &pt, const int div, const std::string &name="")
Fill Constructor with External Clock Divider Initialisation.

Image (const_iterator first, const_iterator last, const std::string &name="")
Range Constructor.

Image (const_iterator first, const_iterator last, const Frequency &f, const std::string &name="")
Range Constructor with Internal Clock Initialisation.

Image (const_iterator first, const_iterator last, const int div, const std::string &name="")
Range Constructor with External Clock Initialisation.

Image (const Image &)
Copy Constructor.

Image & operator= (const Image &)
Assignment Constructor.

~Image ()

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.28 iMS::Image Class Reference 133

Destructor.

Insert/Add ImagePoints

+ void AddPoint (const ImagePoint &pt)

Add a single new ImagePoint at the end of the Image.
« iterator InsertPoint (iterator it, const ImagePoint &pt)

Inserts a single new element into the PointList.
« void InsertPoint (iterator it, size_t nPts, const ImagePoint &pt)

Inserts multiple copies of an element into the PointList.
« void InsertPoint (iterator it, const_iterator first, const_iterator last)

Inserts a range of ImagePoints into the PointList.

Remove/Clear ImagePoints

« iterator RemovePoint (iterator it)

Removes a single ImagePoint from the PointList.
« iterator RemovePoint (iterator first, iterator last)

Removes a range of ImagePoints from the PointList.
+ void Clear ()

Remove all ImagePoints from the Image.

Image Size

* int Size () const
Returns the number of ImagePoints in the PointList.

Default Internal Clock Rate

« void ClockRate (const Frequency &f)

Sets the Internal Clock Rate that shall be the default playback frequency for the Image.
+ const Frequency & ClockRate () const

Returns the default Internal Clock Rate associated with the Image.

Default External Clock Divider

+ void ExtClockDivide (const int div)

Sets the External Clock Divider ratio.
« const int ExtClockDivide () const

Returns the default External Clock Divider Ratio associated with the Image.
Image Description

+ std::string & Description ()
A string stored with the Image to aid human users in identifying the purpose of an image.
+ const std::string & Description () const

Additional Inherited Members

17.28.1 Detailed Description

A sequence of ImagePoints played out sequentially by the Controller and driven by the Synthesiser.

An Image contains a list of ImagePoints and a default Clock Rate. Its length is limited only by the available memory
of the Controller onto which it is downloaded.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

134 Class Documentation

It can be created, copied, modified, merged and more in software on the host running the SDK, stored to disk
inside an ImageProject (from SDK rev1.3) and transferred to/from the iMS Controller using the ImageDownload
mechanism.

Once in memory on a Controller, the Image can be played back. This can be triggered by software, or by an
external trigger input signal applied to the Controller. At the start of playback, the first ImagePoint is programmed
by the Controller into the Synthesiser which updates the RF output of all 4 channels.

The Controller then progresses through the Image sequence ImagePoint by ImagePoint, updating the Synthesiser's
RF output as it goes. The Image progression can either propagate using an internal clock or under the control
of an external signal applied to the Controller. If using the internal clock, the clock is programmed at the point of
downloading the Image with the default value for Clock Rate which is stored alongside the PointList data in the
Image object.

If using an Image alongside other Images in an ImageGroup, for Controllers that support it, the internal ClockRate
may be overriden by the value programmed into the SequenceTable that is a part of the ImageGroup object.

Author

Dave Cowan

Date
2015-11-03

Since

1.0
17.28.2 Constructor & Destructor Documentation
17.28.2.1 iMS::Image::lmage (const std::string & name=""")

Empty Constructor.

Parameters
] in name | The optional descriptive name to apply to the image
17.28.2.2 iMS::Image::Image (size_t nPts, const ImagePoint & pt, const std::string & name="")

Fill Constructor.

Use this constructor to generate an Image with nPt s number of points, each one initialised to the value of pt

Parameters
in nPts | The size of the Image PointList after construction
in pt | The ImagePoint that will fill each of the new elements of the PointList
in name | The optional descriptive name to apply to the image
Since
1.0
17.28.2.3 iMS::Image::Image (size_t nPts, const ImagePoint & pt, const Frequency & f, const std::string & name="")

Fill Constructor with Internal Clock Initialisation.

Use this constructor to generate an Image with nPt s number of points, each one initialised to the value of pt and
with the Internal default Clock Rate initialised to £

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.28 iMS::Image Class Reference 135

Parameters
in nPts | The size of the Image PointList after construction
in pt | The ImagePoint that will fill each of the new elements of the PointList
in f | The default Clock Rate that the Image will playback when using the Internal
Clock mode
in name | The optional descriptive name to apply to the image
Since
1.0
17.28.2.4 iMS::Image::lmage (size_t nPts, const ImagePoint & pt, const int div, const std::stting & name=""")

Fill Constructor with External Clock Divider Initialisation.

Use this constructor to generate an Image with nPt s number of points, each one initialised to the value of pt and
with the External default Clock Divider Ratio initialised to div

Parameters
in nPts | The size of the Image PointList after construction
in pt | The ImagePoint that will fill each of the new elements of the PointList
in div | The default Clock Divider Ratio that the Image will apply to the External Clock
when using the External Clock mode
in name | The optional descriptive name to apply to the image
Since
1.0
17.28.2.5 iMS::Image::lmage (const_iterator first, const_iterator last, const std::string & name="")

Range Constructor.

Use this constructor to copy a range of ImagePoints from another Image For example,

// Create an image with 1,024 points initialized to 70MHz, 100%

Image imgl (1024,

ImagePoint (FAP (70.0,100.0,0.0)));

// Copy the first 500 points into a second image

Image img2 (imgl.begin(), imgl.begin()+500);
Parameters
in first | An iterator that points to the first ImagePoint of a range to construct the new

Image from

in last | An iterator that points to the element after the last ImagePoint of a range to
construct the new Image from
in name | The optional descriptive name to apply to the image
Since
1.0

17.28.2.6 iMS::Image::Image (const_iterator first, const_iterator last, const Frequency & f, const std::string & name =

nn)

Range Constructor with Internal Clock Initialisation.

Use this constructor to copy a range of ImagePoints from another Image and set the internal default clock frequency

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

136 Class Documentation

Parameters
in first | An iterator that points to the first ImagePoint of a range to construct the new
Image from
in last | An iterator that points to the element after the last ImagePoint of a range to
construct the new Image from
in f | The default Clock Rate that the Image will playback when using the Internal
Clock mode
in name | The optional descriptive name to apply to the image
Since
1.0
17.28.2.7 iMS::image::image (const_iterator first, const_iterator Jast, const int div, const std::stting & name=""")

Range Constructor with External Clock Initialisation.

Use this constructor to copy a range of ImagePoints from another Image and set the external default clock divider
ratio

Parameters
in first | An iterator that points to the first ImagePoint of a range to construct the new
Image from
in last | An iterator that points to the element after the last ImagePoint of a range to
construct the new Image from
in div | The default Clock Divider Ratio that the Image will apply to the external clock
signal when using the External Clock mode
in name | The optional descriptive name to apply to the image
Since
1.0

17.28.3 Member Function Documentation
17.28.3.1 void iMS::Image::AddPoint (const ImagePoint & pt)

Add a single new ImagePoint at the end of the Image.
Extends the length of the Image by one ImagePoint and copies to it the data supplied in the const reference pt

Equivalent to

img.InsertPoint (img.end (), 1, pt);
Parameters
] in pt | The ImagePoint to append to the end of the Image
Since
1.0

17.28.3.2 void iMS::Image::Clear ()

Remove all ImagePoints from the Image.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.28 iMS::Image Class Reference 137

The PointList is cleared, all ImagePoints are removed from it and destroyed. The new size of the Image will be zero
and Image: :begin () == Image: :end ()
Since

1.0

17.28.3.3 void iMS::Image::ClockRate (const Frequency & f)

Sets the Internal Clock Rate that shall be the default playback frequency for the Image.

An Image shall have associated with it a default Clock Rate. This is the frequency at which the iMS Controller
playback will propagate from one ImagePoint to the next when it is operated in Internal Clock Mode (see Image«
Player::PointClock).

If the Controller supports multiple images and playback from ImageGroup's, the ImageGroup will contain a sequence
table and in that case, the Clock Rate for playing back the Image as part of a sequence may be overriden by the
Clock Rate field specified in the Sequence Table.

Parameters

in \ f \ A Frequency variable to set the Image default internal Clock Rate from.

Since

1.0

17.28.3.4 const Frequency& iMS::Image::ClockRate () const

Returns the default Internal Clock Rate associated with the Image.

The Image contains a default Clock Rate which shall be used as the frequency for playing out an Image when the
Controller is configured for Internal Clock mode and is not overriden by the Clock Rate specified in a sequence
table.

Returns

A Frequency value that is the default Internal Clock Rate associated with an Image

Since

1.0

17.28.3.5 std::string& iMS::Image::Description ()

A string stored with the Image to aid human users in identifying the purpose of an image.

A descriptive string can be set alongside the Image to allow users to identify and differentiate between images
without having to browse through the point data. The description is optional, and if, not used, the description will
simply default to "image".

Updating the Image Description does not cause the Image UUID to change.

17.28.3.6 void iMS::Image::ExtClockDivide (const int div)

Sets the External Clock Divider ratio.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

138 Class Documentation

An Image shall have associated with it a default external Clock Divider Ratio. This is the ratio of the externally
supplied clock signal to the Image playback rate. For example, set this to 100 and a 1MHz external clock signal will
result in a 10kHz playback rate.

If the Controller supports multiple images and playback from ImageGroup's, the ImageGroup will contain a sequence
table and in that case, the Clock Divider Ratio for playing back the Image as part of a sequence may be overriden
by the Clock Divider Ratio field specified in the Sequence Table.

Parameters

in div \ An integer variable to set the Image default external Clock Divider ratio from.

Since

1.0.1

17.28.3.7 const int iMS::Image::ExtClockDivide () const

Returns the default External Clock Divider Ratio associated with the Image.

The Image contains a default External Clock Divider Ratio which shall be used as the frequency ratio between the
external clock signal and the Image playback frequency when the Controller is configured for External Clock mode
and is not overriden by the Clock Divider Ratio specified in a sequence table.

Returns

An integer value representing the default External Clock Divier Ratio associated with an Image

Since

1.0.1

17.28.3.8 iterator iMS::Image::InsertPoint (iterator it, const ImagePoint & pt)

Inserts a single new element into the PointList.

The ImagePoint pt is inserted before the element pointed to by the iterator it.

Parameters
in it | An ImagePoint will be inserted before the element pointed to by this iterator.
in pt | The ImagePoint to insert into the Image

Since
1.0

17.28.3.9 void iMS::Image::InsertPoint (iterator it, size_t nPts, const ImagePoint & pt)

Inserts multiple copies of an element into the PointList.

nPts copies of the ImagePoint pt are inserted into the PointList before the element pointed to be iterator it

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.28 iMS::Image Class Reference 139

Parameters
in it | Multiple ImagePoints will be inserted before the element pointed to by this
iterator.
in nPts | The number of copies of pt to insert
in pt | The ImagePoint to insert multiple copies of into the Image
Since
1.0

17.28.3.10 void iMS::Image::InsertPoint (iterator if, const_iterator first, const_iterator last)

Inserts a range of ImagePoints into the PointList.

All of the ImagePoints located between first and last are copied in order into the PointList starting before the element
pointed to by iterator it.

For example,

// Create an image with 4 points initialised to 70MHz
Image imgl(4, ImagePoint (FAP(70.0,100.0,0.0)));

// Create an image with 3 points initialised to 100MHz
Image img2(3, ImagePoint (FAP(100.0,100.0,0.0)));

// Insert all of img2 in the middle of imgl
img.InsertPoint (imgl.begin()+2, img2.begin(), img2.end());

img2 contains [70, 70, 100, 100, 100, 70, 70]

Parameters
in it | A range of ImagePoints will be inserted before the element pointed to by this
iterator.
in first | An iterator pointing to the first in a range of ImagePoints to be inserted
in last | An iterator pointing to the ImagePoint after the last ImagePoint to be inserted
Since
1.0

17.28.3.11 iterator iMS::Image::RemovePoint (iterator it)

Removes a single ImagePoint from the PointList.
Erases a single ImagePoint, reducing the size of the Image by one. The removed ImagePoint is destroyed.

Parameters

in it | lterator pointing to a single ImagePoint to be removed from the PointList

Returns

An iterator pointing to the new location of the ImagePoint that followed the element erased by the function call.
If the operation erased the last ImagePoint in the PointList, this will be equal to Tmage: :end ().

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

140 Class Documentation

17.28.3.12 iterator iMS::Image::RemovePoint (iterator first, iterator last)

Removes a range of ImagePoints from the PointList.

Erases a range of ImagePoints from the Image, reducing the size of the Image by the number of ImagePoints
removed, which are destroyed.

Parameters

in first | An iterator pointing to the first in a range of ImagePoints to be removed

in last | An iterator pointing to the ImagePoint after the last ImagePoint to be removed
Returns

An iterator pointing to the new location of the ImagePoint that followed the last element erased by the function
call. If the operation erased the last ImagePoint in the PointList, this will be equal to Tmage: :end ().

Since

1.0

17.28.3.13 intiMS::Image::Size () const

Returns the number of ImagePoints in the PointList.

Returns

The number of ImagePoints in the PointList

Since

1.0

The documentation for this class was generated from the following file:

* Image.h

17.29 iMS::ImageDownload Class Reference

Provides a mechanism for downloading and verifying Images to a Controller's memory.
#include <include\ImageOps.h>

Inheritance diagram for iMS::lmageDownload:

iMS::IBulkTransfer

iMS::ImageDownload

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.29 iMS::imageDownload Class Reference

141

Collaboration diagram for iMS::ImageDownload:

iMS::IBulkTransfer

iMS::ImageDownload

Public Member Functions

Constructor & Destructor

» ImageDownload (IMSSystem &ims, const Image &img)

Constructor for ImageDownload Object.
+ ~ImageDownload ()

Destructor for ImageDownload Object.

Bulk Transfer Initiation

* bool StartDownload ()

Initiates a Bulk Transfer download.
* bool StartVerify ()

Initiates a Bulk Transfer verify.

Retrieve Error Information

* int GetVerifyError ()
Returns the address of the next verify error or -1 if none.

Event Notifications

+ void ImageDownloadEventSubscribe (const int message, |IEventHandler xhandler)

Subscribe a callback function handler to a given ImageDownloadEvents entry.
+ void ImageDownloadEventUnsubscribe (const int message, const IEventHandler xhandler)

Unsubscribe a callback function handler from a given ImageDownloadEvent.

17.29.1 Detailed Description

Provides a mechanism for downloading and verifying Images to a Controller's memory.

Author

Dave Cowan

Date
2015-11-11

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

142 Class Documentation

17.29.2 Constructor & Destructor Documentation
17.29.2.1 iMS::ImageDownload::ImageDownload (IMSSystem & ims, const Image & img)

Constructor for ImageDownload Object.

The pre-requisites for an ImageDownload object to be created are: (1) - an IMSSystem object, representing the
configuration of an iMS target to which the Image is to be downloaded. (2) - a complete Image object to download
to the iIMS target.

ImageDownload stores const references to both. This means that both must exist before the ImageDownload object,
and both must remain valid (not destroyed) until the ImageDownload object itself is destroyed. Because they are
stored as references, the IMSSystem and Image objects themselves may be modified after the construction of the
ImageDownload object.

Once constructed, the object can neither be copied or assigned to another instance.

Parameters
in ims | A reference to the iMS System which is the target for downloading the Image
in img | A const reference to the Image which shall be downloaded to the target
Since
1.0

17.29.3 Member Function Documentation
17.29.3.1 intiMS::imageDownload::GetVerifyError () [virtual]

Returns the address of the next verify error or -1 if none.

After the application has been notified of a failed verify, it can probe the BulkTransfer derived object to obtain the
approximate address at which the BulkTransfer failed. The address is provided as a byte offset from the start of the
BulkTransfer binary object.

Due to the way in which the BulkTransfer mechanism splits the transfer into individual messages, there will be one
error recorded for each message that results in a verify fail. Therefore, the address will only be approximate, to the
nearest message size boundary and if there are multiple byte fails within the scope of a single message, only one
error will be recorded.

Calling this function repeatedly will result in returning the next recorded verify error. If there are no errors left, or the
transfer was successful (i.e. there were no verify failures recorded) the function will return -1.
Returns

byte address of transfer failure or -1 if none.

Since

1.0

Implements iMS::IBulkTransfer.

17.29.3.2 void iMS::ImageDownload::ImageDownloadEventSubscribe (const int message, IEventHandler + handler)

Subscribe a callback function handler to a given ImageDownloadEvents entry.

ImageDownload can callback user application code when an event occurs in the download process. Supported
events are listed under ImageDownloadEvents. The callback function must inherit from the IEventHandler interface
and override its EventAction() method.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.29 iMS::imageDownload Class Reference 143

Use this member function call to subscribe a callback function to an ImageDownloadEvents entry. For the period
that a callback is subscribed, each time an event in ImageDownload occurs that would trigger the subscribed
ImageDownloadEvents entry, the user function callback will be executed.

Parameters
in message | Use the ImageDownloadEvents::Event enum to specify an event to subscribe
to
in handler | A function pointer to the user callback function to execute on the event trigger.
Since
1.0

17.29.3.3 void iMS::ImageDownload::ImageDownloadEventUnsubscribe (const int message, const IEventHandler x handler

)

Unsubscribe a callback function handler from a given ImageDownloadEvent.

Removes all links to a user callback function from the Event Trigger map so that any events that occur in the
ImageDownload object following the Unsubscribe request will no longer execute that function

Parameters
in message | Use the ImageDownloadEvent::Event enum to specify an event to unsubscribe
from
in handler | A function pointer to the user callback function that will no longer execute on
an event
Since
1.0

17.29.3.4 bool iMS::ImageDownload::StartDownload () [virtual]

Initiates a Bulk Transfer download.

If the user has subscribed to the relevant event notifications, the BulkTransfer derived object will issue a completion
event at the end of the download process and will also warn the user anytime a download messaging error occurs.

Returns

Boolean indicating whether Download has started successfully

Since

1.0

Implements iMS::IBulkTransfer.

17.29.3.5 bool iMS::imageDownload::StartVerify () [virtual]

Initiates a Bulk Transfer verify.

If the user has subscribed to the relevant event notifications, the BulkTransfer derived object will raise an event to
the application at the end of the verify process to indicate whether the verification was successful or not.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

144 Class Documentation

Returns

Boolean indicating whether Verify has started successfully

Since

1.0

Implements iMS::|BulkTransfer.

The documentation for this class was generated from the following file:

+ ImageOps.h

17.30 iMS::ImageDownloadEvents Class Reference

All the different types of events that can be triggered by the ImageDownload class.

#include <include\ImageOps.h>

Public Types

» enum Events {
DOWNLOAD_FINISHED, DOWNLOAD_ERROR, VERIFY_SUCCESS, VERIFY_FAIL,
DOWNLOAD_FAIL_MEMORY_FULL, DOWNLOAD_FAIL_TRANSFER_ABORT, IMAGE_DOWNLOAD_«+
NEW_HANDLE, Count }

List of Events raised by the Image Downloader.

17.30.1 Detailed Description

All the different types of events that can be triggered by the ImageDownload class.

Some events contain integer parameter data which can be processed by the IEventHandler::EventAction derived
method

Author

Dave Cowan

Date
2015-11-11

Since

1.0

17.30.2 Member Enumeration Documentation
17.30.2.1 enum iMS::ImageDownloadEvents::Events
List of Events raised by the Image Downloader.

Enumerator

DOWNLOAD_FINISHED Event raised when ImageDownload has confirmed that the iMS Controller received
all of the Image data.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.31 iMS::ImageGroup Class Reference 145

DOWNLOAD_ERROR Event raised each time the ImageDownload class registers an error in the download
process.

VERIFY_SUCCESS Event raised on completion of a download verify, if the download was successfully veri-
fied.

VERIFY_FAIL Event raised on completion of a download verify, if the download failed. param contains the
number of failures recorded.

DOWNLOAD_FAIL_MEMORY_FULL Event raise when unable to begin a fast transfer of image data to mem-
ory, e.g. Image memory is full.

DOWNLOAD_FAIL_TRANSFER_ABORT Event raise when unable to transfer any data through DMA mech-
anism.

IMAGE_DOWNLOAD_NEW_HANDLE Event raised when a new download has been accepted prior to mem-
ory transfer commencing, reporting the new image index handle.

The documentation for this class was generated from the following file:

+ ImageOps.h

17.31 iMS::ImageGroup Class Reference

An ImageGroup collects together multiple associated images and a single ImageSequence for controlling Image
playback order.

#include <include/Image.h>

Inheritance diagram for iMS::lmageGroup:

iMS::DequeBase< Image >

iMS::ImageGroup

Collaboration diagram for iMS::ImageGroup:

iMS::DequeBase< Image >

iMS::ImageGroup

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

146 Class Documentation

Public Member Functions

Constructors & Destructor

+ ImageGroup (const std::string &name=
::itime_t &modified_time=std::time(nullptr))
Create a default empty ImageGroup.
 ImageGroup (const ImageGroup &)
Copy Constructor.
+ ImageGroup & operator= (const ImageGroup &)

Assignment Constructor.
» ~ImageGroup ()

Destructor.

, const std::itime_t &create_time=std::time(nullptr), const std«

ImageGroup collection modifiers

+ void Addimage (const Image &img)

Adds a new Image to the back of the Image Queue.
iterator Insertimage (iterator it, const Image &img)

Inserts a new Image before the specified element in the Image Queue.
iterator Removelmage (iterator it)

Removes an Image at the specified element in the Image Queue.
iterator Removelmage (iterator first, iterator last)

Removes a range of Image's from the specified range of elements in the Image Queue.
void Clear ()

Clear ImageGroup.
int Size () const

Returns the number of Images in the ImageGroup.

Timestamping

» const std::time_t & CreatedTime () const

Returns Time at which the Container was created.
« std::string CreatedTimeFormat () const

Returns Human-readable string for the time at which the ImageGroup was created.

User MetaData

« std::string & Author ()

Author Set Accessor.
+ const std::string & Author () const

Author Get Accessor.
+ std::string & Company ()

Company Set Accessor.

+ const std::string & Company () const
Company Get Accessor.

+ std::string & Revision ()
Revision Set Accessor.

+ const std::string & Revision () const

Revision Get Accessor.
+ std::string & Description ()

Description Set Accessor.
+ const std::string & Description () const

Description Get Accessor.

ImageGroup Sequence

» ImageSequence & Sequence ()

ImageSequence Set Accessor.
+ const ImageSequence & Sequence () const

ImageSequence Get Accesor.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.31 iMS::imageGroup Class Reference 147

Additional Inherited Members

17.31.1 Detailed Description

An ImageGroup collects together multiple associated images and a single ImageSequence for controlling Image
playback order.

Individual Image's may be played back on an iMS System freely but to specify more complex behaviour, typically
an ImageGroup is used. An ImageGroup can contain one or many images and always has exactly one sequence
which may be used to define an order in which those Images are played back on the iMS Controller.

Additionally, user information may be supplied in the form of metadata (name, author, company, revision, description)
to assist in identifying the purpose of an ImageGroup.

Date
2016-11-09

Since

1.3

17.31.2 Constructor & Destructor Documentation

17.31.2.1 iMS::lmageGroup::ImageGroup (const std::string & name = " ", const std::time_t & create_time =
std: :time (nullptr), conststd::itime_t & modified_time=std: :time (nullptr))

Create a default empty ImageGroup.

The ImageGroup is created with zero Images in its list and a default ImageSequence with zero entries. Call as
ImageGroup () or ImageGroup("My \c Group"). do not use the create_time or modified_time parameters.

Parameters

name | Optionally, the caller may specify a Name for the ImageGroup. If not specified, it defaults to
an empty string.

create_time | Specify the creation time for the ImageGroup. This is intended for use only when loading
ImageGroup's from an ImageProject disk file and should not be used.

modified_time | Specify the last modified time for the ImageGroup. This is intended for use only when loading
ImageGroup's from an ImageProject disk file and should not be used.

17.31.3 Member Function Documentation
17.31.3.1 void iMS::ImageGroup::Addimage (const Image & img)

Adds a new Image to the back of the Image Queue.

Parameters

img | a const reference to the Image to be added

17.31.3.2 std::string& iMS::ImageGroup::Author ()

Author Set Accessor.

Sets the Author's name for the ImageGroup

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

148

Class Documentation

Since

1.3

17.31.3.3 const std::string& iMS::ImageGroup::Author () const

Author Get Accessor.

Gets the Author's name for the ImageGroup

Since

1.3

17.31.3.4 void iMS::ImageGroup::Clear ()

Clear ImageGroup.

Remove all Images from the ImageGroup and all entries from the ImageSequence
17.31.3.5 std::string& iMS::ImageGroup::Company ()

Company Set Accessor.

Sets the Company name for the ImageGroup

17.31.3.6 const std::string& iMS::ImageGroup::Company () const

Company Get Accessor.

Gets the Company name for the ImageGroup

17.31.3.7 const std::time_t& iMS::lmageGroup::CreatedTime () const

Returns Time at which the Container was created.

At the time the ImageGroup is first created, the system time is recorded. If a ImageGroup is copied or assigned to
another object, the new object inherits the Creation time of the parent so the timestamp always refers to the time at

which an ImageGroup was initially created.

Returns

a reference to a std::time_t representing the time at which the ImageGroup was created

Since

1.3

17.31.3.8 std::string iMS::ImageGroup::CreatedTimeFormat () const
Returns Human-readable string for the time at which the ImageGroup was created.

Since

1.3

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.31 iMS::imageGroup Class Reference

149

17.31.3.9 std::string& iMS::lmageGroup::Description ()

Description Set Accessor.

Sets a Description field for the ImageGroup

17.31.3.10 const std::string& iMS::ImageGroup::Description () const

Description Get Accessor.

Gets the Description field for the ImageGroup

17.31.3.11 iterator iMS::ImageGroup::Insertimage (iterator it, const Image & img)

Inserts a new Image before the specified element in the Image Queue.

Parameters

The queue element to insert the image before

img

a const reference to the Image to be inserted

Returns

an iterator to the newly inserted Image

17.31.3.12 iterator iMS::imageGroup::Removelmage (iterator it)

Removes an Image at the specified element in the Image Queue.

Parameters

it | the queue element to remove

Returns

an iterator to the element following the element removed from the Image Queue

17.31.3.13 iterator iMS::ImageGroup::Removelmage (iterator first, iterator last)

Removes a range of Image's from the specified range of elements in the Image Queue.

Parameters

first

the initial queue element in the range to remove

last

the final queue element in the range to remove

Returns

an iterator to the element following the last element removed from the Image Queue

17.31.3.14 std::string& iMS::ImageGroup::Revision ()

Revision Set Accessor.

Sets the Revision number for the ImageGroup

Please note that this field is not handled internally by the ImageGroup class. ltis left to the user application to modify,
update or increment the Revision number as well as specifying a numbering scheme as best fits the application.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

150

Class Documentation

17.31.3.15 const std::string& iMS::lmageGroup::Revision () const

Revision Get Accessor.

Gets the Revision number for the ImageGroup

17.31.3.16 ImageSequence& iMS::ImageGroup::Sequence ()

ImageSequence Set Accessor.

Returns a reference to the ImageGroup sequence to allow user application code to modify the Sequence Table.

17.31.3.17 const ImageSequence& iMS::ImageGroup::Sequence () const

ImageSequence Get Accesor.

Returns a const reference to the ImageGroup sequence to allow user application code to view the Sequence Table.

17.31.3.18 int iMS::ImageGroup::Size () const

Returns the number of Images in the ImageGroup.
Returns the number of Images in the ImageGroup

The documentation for this class was generated from the following file:

* Image.h

17.32 iMS::ImageGroupList Class Reference

A List of ImageGroup's used as a container by ImageProject.
#include <include/Image.h>

Inheritance diagram for iMS::ImageGrouplList:

iMS::ListBase< ImageGroup >

iMS::ImageGroupList

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.33 iMS::ImagePlayer Class Reference 151

Collaboration diagram for iMS::ImageGroupList:

iMS::ListBase< ImageGroup >

iMS::ImageGroupList

Additional Inherited Members

17.32.1 Detailed Description

A List of ImageGroup's used as a container by ImageProject.

Date
2016-11-09

Since

1.3

The documentation for this class was generated from the following file:

» ImageProject.h

17.33 iMS::ImagePlayer Class Reference

Once an Image has been downloaded to Controller memory, ImagePlayer can be used to configure and begin
playback.

#include <include\ImageOps.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

152 Class Documentation

Collaboration diagram for iMS::ImagePlayer:

iMS::ImagePlayer::Play Configuration

3

| cfg
|

iMS::ImagePlayer

Classes

« struct PlayConfiguration

This struct sets the attributes for the ImagePlayer to use when initiating an Image Playback.

Public Types

+ enum PointClock { PointClock::INTERNAL, PointClock::EXTERNAL }

Determines whether Image Progression is under the control of an internal or external clock.

« enum ImageTrigger { ImageTrigger::POST_DELAY, ImageTrigger::EXTERNAL, ImageTrigger::HOS«+

T, ImageTrigger::CONTINUOUS }

At the end of each Image, the next Image in the sequence (or the next Repeat of the same image) will begin after the
ImageTrigger condition is satisfied.

» enum Polarity { Polarity::NORMAL, Polarity::INVERSE }
The external signal connections can be configured to be active on the rising edge or the falling edge (CLK, TRIG),
high or low (ENABLE)

+ enum StopStyle { StopStyle::GRACEFULLY, StopStyle::IMMEDIATELY }

The ImagePlayer can end the Image Playback either at the end of the Image or Repeat, or immediately.
+ using Repeats = ImageRepeats

Each Image can be repeated, either a programmable number of times, or indefinitely.

Public Member Functions
Constructor & Destructor

» ImagePlayer (const IMSSystem &ims, const Image &img)
Constructor for ImagePlayer Object.
 ImagePlayer (const IMSSystem &ims, const Image &img, const PlayConfiguration &cfg)
Constructor for ImagePlayer Object with User Configuration.
+ ImagePlayer (const IMSSystem &ims, const ImageTableEntry &ite, const kHz InternalClock)
+ ImagePlayer (const IMSSystem &ims, const ImageTableEntry &ite, const int ExtClockDivide)
» ImagePlayer (const IMSSystem &ims, const ImageTableEntry &ite, const PlayConfiguration &cfg, const
kHz InternalClock)
» ImagePlayer (const IMSSystem &ims, const ImageTableEntry &ite, const PlayConfiguration &cfg, const
int ExtClockDivide)
+ ~ImagePlayer ()

Destructor for ImagePlayer Object.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.33 iMS::ImagePlayer Class Reference 153

Play Control Functions

* bool Play (ImageTrigger start_trig=ImageTrigger::CONTINUOUS)

Starts Image Playback.
* bool GetProgress ()

Requests current Point Progress.
* bool Stop (StopStyle stop)

Halts the Image Playback.
* bool Stop ()
Halts the Image Playback After Last Point in Image or Repeat.

Post Delay helper function

+ void SetPostDelay (const std::chrono::duration< double > &dly)

Helper function that sets the Post Delay configuration attribute from any compatible std::chrono class (e.g. std«
::chrono::milliseconds(100.0))

Event Notifications

+ void ImagePlayerEventSubscribe (const int message, IEventHandler «handler)

Subscribe a callback function handler to a given ImagePlayerEvent.
+ void ImagePlayerEventUnsubscribe (const int message, const IEventHandler xhandler)

Unsubscribe a callback function handler from a given ImageDownloadEvent.

Public Attributes

« struct LIBSPEC iMS::ImagePlayer::PlayConfiguration cfg

Defines the configuration for Image Playback.

17.33.1 Detailed Description

Once an Image has been downloaded to Controller memory, ImagePlayer can be used to configure and begin
playback.

ImagePlayer contains a Configuration Structure which holds all of the different attributes that may be used to modify
the behaviour of the playback, including internal oscillator or external clock, next-image triggering and image re-
peating. It does not define the internal oscillator clock rate for ImagePoint playback frequency when not using an
external clock; this information is stored in the Image class.

Once constructed, the ImagePlayer.Play() function will begin playback, ImagePlayer.Stop() will end playback (im-
mediately or at the end of an image) and ImagePlayer.GetProgress() will raise an event to the user application
indicating the current ImagePoint that has been reached in playback.

Author

Dave Cowan

Date
2015-11-11

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

154 Class Documentation

17.33.2 Member Typedef Documentation
17.33.2.1 using iMS::ImagePlayer::Repeats = ImageRepeats

Each Image can be repeated, either a programmable number of times, or indefinitely.

Repeats

Since

1.0

17.33.3 Member Enumeration Documentation
17.33.3.1 enum iMS::ImagePlayer::ImageTrigger [strong]

At the end of each Image, the next Image in the sequence (or the next Repeat of the same image) will begin after
the ImageTrigger condition is satisfied.

Since
1.0
Enumerator

POST_DELAY A programmable timer is started at the end of the image. The next image is triggered after the
timer times out.

EXTERNAL The next image is triggered when an edge is detected on the TRIG signal connected to the
Controller.

HOST The next image is triggered when application software sends a 'User Trigger' request.
CONTINUOUS The next image is triggered immediately.

17.33.3.2 enum iMS::ImagePlayer::PointClock [strong]

Determines whether Image Progression is under the control of an internal or external clock.

Since
1.0
Enumerator

INTERNAL ImagePoint progression through the Image at a rate determined by the programming of the internal
NCO (Numerically Controlled Oscillator)

EXTERNAL ImagePoint progression through the Image one point per edge detected on the CLK signal con-
nected to the Controller.

17.33.3.3 enum iMS::ImagePlayer::Polarity [strong]

The external signal connections can be configured to be active on the rising edge or the falling edge (CLK, TRIG),
high or low (ENABLE)

Since
1.0
Enumerator

NORMAL CLK/ TRIG are active on the rising edge. ENABLE is active high.
INVERSE CLK/ TRIG are active on the falling edge. ENABLE is active low.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.33 iMS::ImagePlayer Class Reference 155

17.33.3.4 enum iMS::ImagePlayer::StopStyle [strong]
The ImagePlayer can end the Image Playback either at the end of the Image or Repeat, or immediately.

Since

1.0

Enumerator

GRACEFULLY The default method for stopping the Image is to action the Stop request at the end of the
current Image, or Image Repeat.

IMMEDIATELY Use this to end the Image Playback as soon as the command is processed by the Controller.

17.33.4 Constructor & Destructor Documentation
17.33.4.1 iMS::ImagePlayer::ImagePlayer (const IMSSystem & ims, const Image & img)

Constructor for ImagePlayer Object.

An IMSSystem object, representing the configuration of an iMS target on which an Image has already been down-
loaded, must be passed by const reference to the ImagePlayer constructor.

The IMSSystem object must exist before the ImagePlayer object, and must remain valid (not destroyed) until the
ImagePlayer object itself is destroyed.

The Image to be played back must also be passed by reference. ImagePlayer will check the unique ID (UUID) of
an Image against the value that is in memory on the hardware to ensure that it is playing the same Image that has
been downloaded.

Once constructed, the object can neither be copied or assigned to another instance.

Parameters
in ims | A const reference to the iIMS System which is the target on which to playback
the Image
in img | A const reference to the Image that has been downloaded to the target
Since
1.0

17.33.4.2 iMS::ImagePlayer::imagePlayer (const IMSSystem & ims, const Image & img, const PlayConfiguration & cfg
)

Constructor for ImagePlayer Object with User Configuration.

As per the default constructor, but also receives a const reference to a PlayConfiguration struct which will have
already been modified by the application to change the playback behaviour. The attributes of the struct are copied
to the internal configuration struct.

An alternative is to use the default constructor and modify the configuration manually after construction.

Parameters

in ims | A const reference to the iIMS System which is the target for downloading the
Image

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

156 Class Documentation

in img | A const reference to the Image that has been downloaded to the target

in cfg | A const reference to a PlayConfiguration playback configuration structure
Since

1.0

17.33.5 Member Function Documentation
17.33.5.1 bool iMS::lmagePlayer::GetProgress ()

Requests current Point Progress.

This function call will request from the Controller the current ImagePoint position within the playback of the current
Image. If an Image playback is not in progress, this function call will return false.

Once the Controller has responded with the ImagePoint position, an ImagePlayerEvent::POINT_PROGRESS event
will be triggered containing the point position which the application can register to receive.
Returns

true if the Progress request was successfully sent to the Controller

Since

1.0

17.33.5.2 void iMS::ImagePlayer::imagePlayerEventSubscribe (const int message, IEventHandler x handler)

Subscribe a callback function handler to a given ImagePlayerEvent.

ImagePlayer can callback user application code when an event occurs during playback. Supported events are listed
under ImagePlayerEvents. The callback function must inherit from the |IEventHandler interface and override its
EventAction() method.

Use this member function call to subscribe a callback function to an ImagePlayerEvent. For the period that a callback
is subscribed, each time an event in ImagePlayer occurs that would trigger the subscribed ImagePlayerEvent, the
user function callback will be executed.

Parameters
in message | Use the ImagePlayerEvents::Event enum to specify an event to subscribe to
in handler | A function pointer to the user callback function to execute on the event trigger.
Since
1.0

17.33.5.3 void iMS::ImagePlayer::imagePlayerEventUnsubscribe (const int message, const IEventHandler x handler)

Unsubscribe a callback function handler from a given ImageDownloadEvent.

Removes all links to a user callback function from the Event Trigger map so that any events that occur in the
ImageDownload object following the Unsubscribe request will no longer execute that function

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.33 iMS::ImagePlayer Class Reference 157

Parameters
in message | Use the ImageDownloadEvents::Event enum to specify an event to unsub-
scribe from
in handler | A function pointer to the user callback function that will no longer execute on
an event
Since
1.0

17.33.5.4 bool iMS::imagePlayer::Play (ImageTrigger start trig =ImageTrigger::CONTINUOUS)

Starts Image Playback.

This function will begin the playback of an Image resident in Controller memory immediately on receipt of the
message by the Controller. If an Image is already playing, the function call will fail and return false. Likewise, if an
Image Download is in progress, the function call will fail and return false. If no Image has been downloaded to the
Controller, this function will run successfully, but nothing will happen on the Controller.

Once the Controller has responded indicating that the Image Playback has started, an ImagePlayerEvent::IMAG«
E_STARTED event will be raised which the application can register to receive

Returns

true if the Play Image request was sent to the Controller successfully.

Since

1.0

17.33.5.5 void iMS::ImagePlayer::SetPostDelay (const std::chrono::duration<< double > & dly)

Helper function that sets the Post Delay configuration attribute from any compatible std::chrono class (e.g. std«
::chrono::milliseconds(100.0))

Parameters
in dly | Use one of the derived std::chrono classes to set an appropriate post-image
delay
Since
1.0

17.33.5.6 bool iMS::ImagePlayer::Stop (StopStyle stop)

Halts the Image Playback.

This function call will end the playback of an Image that is currently taking place on the Controller. There are two
methods for stopping Image playback: (1) StopStyle::GRACEFULLY : Ends the Image playback after the last point
of the current Image. If the Image is being repeated, either indefinitely or programmatically, playback will halt at
the last point of the current Repeat, irrespective of whether there are more repeats programmed to happen. (2)
StopStyle::IMMEDIATELY : Ends the Image playback as soon as the message is received by the Controller.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

158 Class Documentation

Parameters

in stop | Defines which Image Stop method to use

Returns

true if the Stop message was successfully sent to the Controller.

Since

1.0

17.33.5.7 bool iMS::ImagePlayer::Stop() [inline]

Halts the Image Playback After Last Point in Image or Repeat.

Default Stop function. Identical to Stop (StopStyle: :GRACEFULLY);

Since

1.0

The documentation for this class was generated from the following file:

+ ImageOps.h

17.34 iMS::ImagePlayerEvents Class Reference

All the different types of events that can be triggered by the ImagePlayer class.

#include <include\ImageOps.h>

Public Types

» enum Events { POINT_PROGRESS, IMAGE_STARTED, IMAGE_FINISHED, Count }
List of Events raised by the Image Player.
17.34.1 Detailed Description
All the different types of events that can be triggered by the ImagePlayer class.

Author

Dave Cowan

Date
2015-11-11

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.35 iMS::ImagePoint Class Reference 159

17.34.2 Member Enumeration Documentation
17.34.2.1 enum iMS::ImagePlayerEvents::Events

List of Events raised by the Image Player.

Enumerator

POINT_PROGRESS Event raised in response to ImagePlayer::GetProgress(). Indicates the number of points
into an Image playback.

IMAGE_STARTED Event raised when an Image in the Controller begins playback.
IMAGE_FINISHED Event raised when an Image in the Controller completes playback.

The documentation for this class was generated from the following file:

* ImageOps.h

17.35 iMS::ImagePoint Class Reference

Stores 4 FAP Triads containing frequency, amplitude and phase data for 4 RF channels.

#include <include/Image.h>

Public Member Functions

 ImagePoint ()
Default Constructor.
 ImagePoint (FAP fap)
Constructor with Uniform Channel Data.
» ImagePoint (FAP ch1, FAP ch2, FAP ch3, FAP ch4)
Constructor with Independent Channel Data.
+ ImagePoint (FAP fap, float synca, unsigned int syncd)
Constructor with Uniform Channel Data and Synchronous Data.
+ ImagePoint (FAP ch1, FAP ch2, FAP ch3, FAP ch4, float synca_1, float synca_2, unsigned int syncd)
Constructor with Independent Channel Data and Synchronous Data.
* bool operator== (ImagePoint const &rhs) const

Equality Operator checks ImagePoint object for equivalence.

Get/Set FAP data for the image point

» const FAP & GetFAP (const RFChannel) const

Retrieves Frequency, Amplitude (Percent) and Phase (Degrees) data for one RF channel.
« void SetFAP (const RFChannel, const FAP &)

Assigns Frequency, Amplitude (Percent) and Phase (Degrees) data for one RF channel.
FAP & SetFAP (const RFChannel)

Assigns Frequency, Amplitude (Percent) and Phase (Degrees) data for one RF channel.
+ void SetAll (const FAP &)

Assigns Frequency, Amplitude (Percent) and Phase (Degrees) data for all RF channels.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

160

Class Documentation

Get/Set Synchronous data for the image point

 const float & GetSyncA (int index) const

Retrieve Analogue Synchronous Data.
+ void SetSyncA (int index, const float &value)

Assign Analogue Synchronous Data.
+ const unsigned int & GetSyncD () const

Retrieve Digital Synchronous Data.
+ void SetSyncD (const unsigned int &value)

Assign Digital Synchronous Data.

17.35.1 Detailed Description

Stores 4 FAP Triads containing frequency, amplitude and phase data for 4 RF channels.

An ImagePoint uniquely defines the required output drive setting for each of the 4 RF Channels output by the iMS
Synthesiser. Each channel (from 1 to 4) is given its own FAP member variable, which is a combination of Frequency,

Amplitude (Percent) and Phase (Degrees) data.

At any instantaneous moment, the status of the 4 iIMS RF driver outputs is representable by a single ImagePoint

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.35.2 Constructor & Destructor Documentation
17.35.2.1 iMS::ImagePoint::lmagePoint (FAP fap)

Constructor with Uniform Channel Data.

Construct ImagePoint with identical FAP for each channel

Since

1.0

17.35.2.2 iMS::ImagePoint::ImagePoint (FAP ch1, FAP ch2, FAP ch3, FAP ch4)

Constructor with Independent Channel Data.

Construct ImagePoint with full specification of FAP for each channel

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.35 iMS::ImagePoint Class Reference 161

17.35.2.3 iMS::ImagePoint::ImagePoint (FAP fap, float synca, unsigned int syncd)

Constructor with Uniform Channel Data and Synchronous Data.

Construct ImagePoint with identical FAP for each channel

Since

1.2

17.35.2.4 iMS::ImagePoint::iImagePoint (FAP ch1, FAP ch2, FAP ch3, FAP ch4, float synca_1, float synca_2, unsigned int
syncd)

Constructor with Independent Channel Data and Synchronous Data.

Construct ImagePoint with full specification of FAP for each channel

Since

1.2

17.35.3 Member Function Documentation
17.35.3.1 const FAP& iMS::ImagePoint::GetFAP (const RFChannel) const
Retrieves Frequency, Amplitude (Percent) and Phase (Degrees) data for one RF channel.

Returns

FAP triad for the specified RF channel

Since

1.0

17.35.3.2 const float& iMS::ImagePoint::GetSyncA (int index) const

Retrieve Analogue Synchronous Data.

Parameters

in \ index | 0 or 1 references 2 independent synchronous data variables

Returns

a floating point value between 0 and 1

Since

1.2

17.35.3.3 const unsigned int& iMS::ImagePoint::GetSyncD () const

Retrieve Digital Synchronous Data.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

162 Class Documentation

Returns

an unsigned integer value representing the synchronous data

Since

1.2

17.35.3.4 bool iMS::ImagePoint::operator== (ImagePoint const & rhs) const

Equality Operator checks ImagePoint object for equivalence.

Parameters

in rhs | An ImagePoint object to perform the comparison with

Returns

True if the supplied ImagePoint is identical to this one.

Since

1.1

17.35.3.5 void iMS::ImagePoint::SetAll (const FAP &)
Assigns Frequency, Amplitude (Percent) and Phase (Degrees) data for all RF channels.

Since

1.0

17.35.3.6 void iMS::ImagePoint::SetFAP (const RFChannel, const FAP &)
Assigns Frequency, Amplitude (Percent) and Phase (Degrees) data for one RF channel.

Since

1.0

17.35.3.7 FAP& iMS::ImagePoint::SetFAP (const RFChannel)
Assigns Frequency, Amplitude (Percent) and Phase (Degrees) data for one RF channel.

Since

1.2

17.35.3.8 void iMS::ImagePoint::SetSyncA (int index, const float & value)

Assign Analogue Synchronous Data.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.36 iMS::ImageProject Class Reference 163

Parameters
in index | 0 or 1 references 2 independent synchronous data variables
in value | The floating point value to assign, will be clamped within the range 0 <= value
<=1
Since
1.2

17.35.3.9 void iMS::ImagePoint::SetSyncD (const unsigned int & value)

Assign Digital Synchronous Data.

Parameters

in \ value | The unsigned integer value to assign

Since

1.2

The documentation for this class was generated from the following file:

* Image.h

17.36 iMS::ImageProject Class Reference

An ImageProject allows the user to organise their data and store it on the host computer.

#include <include/Image.h>

Public Member Functions

+ void Clear ()

Reset ImageProject to empty state.

Constructors & Destructor

» ImageProject ()

Default Constructor.
+ ImageProject (const std::string &fileName)

Implicit Load From File Constructor.

Image Group Container

+ ImageGrouplList & ImageGroupContainer ()

Set Accessor for the Image Group Container.
+ const ImageGroupList & ImageGroupContainer () const

Get Accessor for the Image Group Container.

Compensation Function Container

« CompensationFunctionList & CompensationFunctionContainer ()
Set Accessor for the Compensation Function Container.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

164

Class Documentation

+ const CompensationFunctionList & CompensationFunctionContainer () const

Get Accessor for the Compensation Function Container.

Tone Buffer Container

» ToneBufferList & ToneBufferContainer ()

Set Accessor for the Tone Buffer Container.
+ const ToneBufferList & ToneBufferContainer () const

Get Accessor for the Tone Buffer Container.

Free Image Container

» ImageGroup & FreelmageContainer ()

Set Accessor for the Free Image Container.
+ const ImageGroup & FreelmageContainer () const

Get Accessor for the Tone Buffer Container.

FileSystem Functions

* bool Save (const std::string &fileName)

Save ImageProject to host disk.
* bool Load (const std::string &fileName)

Load ImageProject from host disk.

17.36.1 Detailed Description

An ImageProject allows the user to organise their data and store it on the host computer.

An ImageProject permits the user to organise and contain all of their data relating to a specific use case for the
iMS. Any number of ImageGroup's, CompensationFunction's, ToneBuffer's and/or Free Images (individual Images
not associated in an ImageGroup and with no ImageSequence) may be help in an ImageProject. The data is stored
on disk in an efficient custom file format that may be unzipped by the user and inspected in an XML file viewer, if

wished.

A simple use case for the ImageProject is to contain a single Image, kept in the FreelmageContainer, and to
load/save that Image to disk. A more complex use case might be to hold different ImageGroup's for different
purposes that are used as the raw data for a processing task that requires some other software to select between

Image's and ImageSequence's according to some system parameter.

Date
2016-11-09

Since

1.3

17.36.2 Constructor & Destructor Documentation

17.36.2.1 iMS::ImageProject::imageProject ()

Default Constructor.

Creates an empty ImageProject.

17.36.2.2 iMS::ImageProject::imageProject (const std::string & fileName)

Implicit Load From File Constructor.

Calls the default constructor, then ImageProject::Load() to initialise the object from the filesystem param(in] fileName

String pointing to a valid .iip or .xml file on the host filesystem to load into the ImageProject

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.36 iMS::ImageProject Class Reference 165

17.36.3 Member Function Documentation
17.36.3.1 void iMS::ImageProject::Clear ()

Reset ImageProject to empty state.

Removes all entries from all of the containers

17.36.3.2 CompensationFunctionList& iMS::ImageProject::CompensationFunctionContainer ()

Set Accessor for the Compensation Function Container.

Use this function to modify, add and remove CompensationFunction's from the ImageProject.

17.36.3.3 ImageGroup& iMS::ImageProject::FreelmageContainer ()

Set Accessor for the Free Image Container.

Use this function to modify, add and remove individual Image's from the ImageProject. The Free Image Container
is configured as an ImageGroup to allow user software to access its Image's using the same function calls as when
working with an ImageGroup object. In this regard, the FreelmageContainer may be regarded as a "superset" of
the ImageGroup that permits save/load to disk.

17.36.3.4 ImageGroupList& iMS::imageProject::imageGroupContainer ()

Set Accessor for the Image Group Container.

Use this function to modify, add and remove ImageGroup's from the ImageProject.

17.36.3.5 bool iMS::ImageProject::Load (const std::string & fileName)

Load ImageProject from host disk.

First clears the ImageProject of any existing content. Then it will try to read in data from the provided file, work
out whether it is compressed or uncompressed, and populate the ImageProject containers from the file data. The
function is fully backwards compatible with all previous versions of the SDK and should therefore be capable of
reading in any file ever generated by the SDK. It is also compatible with ImageProject files generated by the previous
generation of Isomet Image software, the iHHS ImageFile Generator

Parameters

in fileName \ String representing the full path of a file to load fata from.

17.36.3.6 bool iMS::ImageProject::Save (const std::string & fileName)

Save ImageProject to host disk.

Stores all data in the ImageProject containers to a custom file format on disk. The preferred file extension is ".«—
iip" for Isomet Image Project. If the passed file name ends in .xml however, the function will save the data to an
uncompressed XML type file which can be read in any XML file viewer.

Warning

XML files saved this way can be very large!

If the passed file name ends in neither .xml nor .iip, the function will save the data in compressed format as if it
ended in .iip but respecting the user's choice of file name.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

166 Class Documentation

Parameters

in fileName | String representing the full path of a file to save data to, ending in .xml (un-
compressed) or .iip (compressed)

17.36.3.7 ToneBufferList& iMS::imageProject::ToneBufferContainer ()

Set Accessor for the Tone Buffer Container.
Use this function to modify, add and remove ToneBuffer's from the ImageProject.

The documentation for this class was generated from the following file:

» ImageProject.h

17.37 iMS::ImageSequence Class Reference

An ImageSequence object completely defines a sequence to be played back on an iMS Controller in terms by
containing a list of ImageSequenceEntry 's plus a terminating action and optional value.

#include <include/Image.h>

Inheritance diagram for iIMS::ImageSequence:

iMS::ListBase< ImageSequence
Entry >

A

iMS::ImageSequence

Collaboration diagram for iMS::ImageSequence:

iMS::ListBase< ImageSequence
Entry >

iMS::ImageSequence

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.37 iMS::ImageSequence Class Reference 167

Public Member Functions
Constructors & Destructor

» ImageSequence ()

Create a default empty Image Sequence.
» ImageSequence (SequenceTermAction action, int val=0)

Create a default empty Image Sequence with Termination Action specifier.
» ~ImageSequence ()

Destructor.
» ImageSequence (const ImageSequence &)

Copy Constructor.
» ImageSequence & operator= (const ImageSequence &)

Assignment Constructor.

Control Sequence Terminating Actions

+ void OnTermination (SequenceTermAction act, int val=0)

Update Termination Action.
+ const SequenceTermAction & TermAction () const

return a reference to the currently assign Termination Action
+ const int & TermValue () const

return a reference to the currently assign Termination Action Parameter

Additional Inherited Members

17.37.1 Detailed Description
An ImageSequence object completely defines a sequence to be played back on an iMS Controller in terms by
containing a list of ImageSequenceEntry 's plus a terminating action and optional value.

Each ImageSequenceEntry defines the Image to be played back at that point in the sequence, together with relevant
parameters such as clock frequency, divider and number of repeats. The ImageSequenceEntry 's are played back
in the order in which they appear in the ImageSequence list.

The ImageSequence is a container for the list of ImageSequenceEntry 's. User application code can create the
entries and add them / remove them from the front or back of the list, insert them or erase them from anywhere in
the list, or assign multiple copies of the entry to the list.

As with Images, ImageSequences have a Unique ID (UUID) associated with them which are used to uniquely refer
to sequences when communicating with the iMS Controller through the SequenceManager.

Date
2016-04-24

Since

1.24

17.37.2 Constructor & Destructor Documentation
17.37.2.1 iMS::ImageSequence::ImageSequence (SequenceTermAction action, int val=0)

Create a default empty Image Sequence with Termination Action specifier.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

168 Class Documentation

Parameters

action | The operation to perform once the Sequence has completed playback

val | Optional parameter to the Termination Action

17.37.3 Member Function Documentation
17.37.3.1 void iMS::ImageSequence::OnTermination (SequenceTermAction act, int val=0)

Update Termination Action.

Parameters
in act | Assign an operation to perform when the Sequence completes
in val | Optional Parameter to use with some Termination Actions

17.37.3.2 const SequenceTermAction& iMS::imageSequence::TermAction () const
return a reference to the currently assign Termination Action

Returns

a reference to the currently assign Termination Action

17.37.3.3 const int& iMS::ImageSequence::TermValue () const
return a reference to the currently assign Termination Action Parameter

Returns

a reference to the currently assign Termination Action Parameter

The documentation for this class was generated from the following file:

* Image.h

17.38 iMS::ImageSequenceEntry Struct Reference

An ImageSequenceEntry object can be created by application software to specify the parameters by which an Image
is played back during an ImageSequence.

#include <include/Image.h>

Public Member Functions

* bool operator== (ImageSequenceEntry const &rhs) const

Equality Operator checks ImageSequenceEntry object for equivalence.

Constructors & Destructor

» ImageSequenceEntry ()
Default Constructor.
» ImageSequenceEntry (const Image &img, const ImageRepeats &Rpt=ImageRepeats::NONE, const int
rpts=0)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.38 iMS::ImageSequenceEntry Struct Reference 169

Construct ImageSequenceEntry object from Image object resident in application software.
ImageSequenceEntry (const ImageTableEntry &ite, const kHz &InternalClock=kHz(1.0), const Image+«
Repeats &Rpt=ImageRepeats::NONE, const int rpts=0)

Construct ImageSequenceEntry object from an Image resident in Controller memory referenced by its index table

entry.

ImageSequenceEntry (const ImageTableEntry &ite, const int ExtClockDivide=1, const ImageRepeats
&Rpt=ImageRepeats::NONE, const int rpts=0)

Construct ImageSequenceEntry object from an Image resident in Controller memory referenced by its index table

entry.
~ImageSequenceEntry ()

Destructor.

ImageSequenceEntry (const ImageSequenceEntry &)

Copy Constructor.
ImageSequenceEntry & operator= (const ImageSequenceEntry &)

Assignment Constructor.

Delay Settings

std::chrono::duration< double > & PostimgDelay ()

Setter for post Image delay.
const std::chrono::duration< double > & PostimgDelay () const

Getter for post Image delay.
std::chrono::duration< double > & SyncOutDelay ()

Setter for Synchronous Digital Output signal Delay.
const std::chrono::duration< double > & SyncOutDelay () const

Getter for Synchronous Digital Output signal delay.

Sequence Entry Parameters

17.38.1

const std::array< std::uint8_t, 16 > & UUID () const
Image Unique Identifier can be used to synchronise Sequence Entries with host software Image objects.
const int & ExtDiv () const

returns the programmed External Clock Divider ratio
const Frequency & IntOsc () const

returns the programmed Internal Oscillator Frequency
const ImageRepeats & RptType () const

returns the configured Repeat style
const int & NumRpts () const

returns the number of times to repeat an Image before moving to the next entry in the Sequence

Detailed Description

An ImageSequenceEntry object can be created by application software to specify the parameters by which an Image
is played back during an ImageSequence.

An ImageSequence contains a list of ImageSequenceEntry s each of which is programmed with one Image (or
ImageTableEntry) specifying the ImagePoint data that will be output during playback. Additional parameters that
can be specified include

+ Internal Clock Frequency (implicitly defined when programmed from an Image object)

» External Clock Divider (implicitly defined when programmed from an Image object)

* Number of Repeats (to a maximum of 255)

+ Amount of delay to be added after the end of Image playback (if programmed for Post-Image Delay mode)

» Amount of delay to apply to the Synchronous Digital Output signals

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

170 Class Documentation

Author

Dave Cowan

Date
2016-04-24

Since

1.2.4

17.38.2 Constructor & Destructor Documentation

17.38.2.1 iMS::ImageSequenceEntry::imageSequenceEntry (const Image & img, const ImageRepeats & Rpt =
ImageRepeats::NONE, constint rpts=0)

Construct ImageSequenceEntry object from Image object resident in application software.

If using this construction method, the Internal Clock Rate or External Clock Divider, if required, should first be set
using the Image::ClockRate() and Image::ExtClockDivide() functions.

The user can optionally specify the number of times to repeat the Image before moving on to the next entry in the
sequence. The default is no repeats, and these parameters may then be ommitted.

Parameters

img | A reference to the Image object which is to be played in the Sequence (must have been
downloaded to Controller memory before playback)

Rpt | An optional parameter specifying whether repeats are required (ImageRepeats::PROGRAM)
or not (ImageRepeats::NONE)

rpts | An optional integer specifying the number of repeats to perform (max 255).

17.38.2.2 iMS::ImageSequenceEntry::imageSequenceEntry (const ImageTableEntry & ite, const kHz & InternalClock =
kHz (1.0), const ImageRepeats & Rpt =ImageRepeats::NONE, constint rpts=0)

Construct ImageSequenceEntry object from an Image resident in Controller memory referenced by its index table
entry.

This is the preferred method for constructing an ImageSequenceEntry object when the Image has already have been
downloaded to the Controller. However, the Index Table in the Controller does not store default clock frequency or
clock divider information, so this must be specified manually.

The user can optionally specify the number of times to repeat the Image before moving on to the next entry in the
sequence. The default is no repeats, and these parameters may then be ommitted.

Parameters

ite | A reference to the Image object from ite ImageTableEntry (can be retrieved from the IMS«
System object through an ImageTableViewer)

InternalClock | Specifies the clock rate with which to program the Internal NCO oscillator (optional, defaults
to 1kHz)

Rpt | An optional parameter specifying whether repeats are required (ImageRepeats::PROGRAM)
or not (ImageRepeats::NONE)

rpts | An optional integer specifying the number of repeats to perform (max 255).

17.38.2.3 iMS::ImageSequenceEntry::imageSequenceEntry (const ImageTableEntry & ite, const int ExtClockDivide = 1,
const ImageRepeats & Rpt =ImageRepeats::NONE, constint rpts =0)

Construct ImageSequenceEntry object from an Image resident in Controller memory referenced by its index table
entry.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.38 iMS::ImageSequenceEntry Struct Reference 171

This is the preferred method for constructing an ImageSequenceEntry object when the Image has already have been
downloaded to the Controller. However, the Index Table in the Controller does not store default clock frequency or
clock divider information, so this must be specified manually.

The user can optionally specify the number of times to repeat the Image before moving on to the next entry in the
sequence. The default is no repeats, and these parameters may then be ommitted.

Parameters
ite | A reference to the Image object from ite ImageTableEntry (can be retrieved from the IMS«
System object through an ImageTableViewer)
ExtClockDivide | divides down the externally supplied clock signal by an integer ratio, e.g. 3 => update every
3rd clock edge (optional, default to 1, i.e. off)
Rpt | An optional parameter specifying whether repeats are required (ImageRepeats::PROGRAM)
or not (ImageRepeats::NONE)
rpts | An optional integer specifying the number of repeats to perform (max 255).

17.38.3 Member Function Documentation

17.38.3.1 const int& iMS::ImageSequenceEntry::ExtDiv () const

returns the programmed External Clock Divider ratio

Returns

the programmed External Clock Divider ratio

17.38.3.2 const Frequency& iMS::ImageSequenceEntry::IntOsc () const

returns the programmed Internal Oscillator Frequency

Returns

the programmed Internal Oscillator Frequency

17.38.3.3 const int& iMS::ImageSequenceEntry::NumRpts () const

returns the number of times to repeat an Image before moving to the next entry in the Sequence

Returns

the number of times to repeat an Image before moving to the next entry in the Sequence

17.38.3.4 bool iMS::ImageSequenceEntry::operator== (ImageSequenceEntry const & rhs) const

Equality Operator checks ImageSequenceEntry object for equivalence.

Parameters

in

rhs | An ImageSequenceEntry object to perform the comparison with

Returns

True if the supplied ImageSequenceEntry is identical to this one.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

172 Class Documentation

17.38.3.5 std::chrono::duration<double > & iMS::ImageSequenceEntry::PostimgDelay ()

Setter for post Image delay.

If the ImageSequence is configured to create a 'pause’ at the end of playback for each Image in the sequence,
the pause time can be programmed on a per entry basis using this function. Set SequenceManager::Seq«
Configuration::trig to ImageTrigger::POST_DELAY to use this feature.

The Pause time may be specified as any std::chrono value using duration_cast but hardware limitations restrict the
real delay time to a resolution of 0.1ms and a maximum of 6.5535s.

Returns

a Ivalue reference to the Post Delay time

17.38.3.6 const std::chrono::duration<<double >& iMS::ImageSequenceEntry::PostimgDelay () const
Getter for post Image delay.

Returns

a const reference (rvalue) for reading the Post Delay time

17.38.3.7 const ImageRepeats& iMS::ImageSequenceEntry::RptType () const
returns the configured Repeat style

Returns

the configured Repeat style

17.38.3.8 std::chrono::duration<<double > & iMS::ImageSequenceEntry::SyncOutDelay ()

Setter for Synchronous Digital Output signal Delay.

The Synchronous Digital Output signals of the Synthesiser can be used to output data from either the FAP Syn-
chronous digital field or from entries in the Compensation Look Up Table. The data updates at the same time as the
Image data updated the RF output. Using the SyncOutDelay field, the data can be shifted in time to compensate for
latency in the system or to, for example, delay a trigger pulse to the middle of an RF Image Point.

The Delay time may be specified as any std::chrono value using duration_cast but hardware limitations restrict the
real delay time to a minimum of 0.01us and a maximum of 655.35us.

Returns

a Ivalue reference to the Synchronous Digital Output delay time

17.38.3.9 const std::chrono::duration<double > & iMS::ImageSequenceEntry::SyncOutDelay () const
Getter for Synchronous Digital Output signal delay.

Returns

a const reference (rvalue) for reading the Synchronous Digital Output signal delay time

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.39 iMS::imageTableEntry Struct Reference 173

17.38.3.10 const std::array <std::uint8_t, 16>& iMS::ImageSequenceEntry::UUID () const

Image Unique Identifier can be used to synchronise Sequence Entries with host software Image objects.

Each Image created in application software is automatically assigned a Unique ID (UUID) which is updated anytime
the Image is modified. Sequences are internally specified using the UUID of an Image to ensure absolute consis-
tency with the Image stored in Controller memory and referenced in the Index table. The User can check whether
an Image object matches the Image referenced in a ImageSequenceEntry by comparing its UUID.

Returns

a 16 byte array containing the Image UUID.

The documentation for this struct was generated from the following file:

* Image.h

17.39 iMS::ImageTableEntry Struct Reference

An ImageTableEntry is created by the SDK on connecting to an iMS System, one for each Image that is stored in
Controller memory and allocated in the Image Index Table. Further ImageTableEntries are added to the table each
time an Image is downloaded to the Controller.

#include <include/Image.h>

Public Member Functions

Constructors & Destructor

* ImageTableEntry ()

Default Constructor.
» ImageTableEntry (Imagelndex handle, std::uint32_t address, int n_pts, int size, std::uint32_t fmt, std«

rarray< std::uint8_t, 16 > uuid, std::string name)
Full Specification Constructor.
» ImageTableEntry (Imagelndex handle, const std::vector< std::uint8_t > &)

Construct object from byte array in binary format specific to Controller communications. Used internally to build
ImageTableEntries.
» ~ImageTableEntry ()

Destructor.
» ImageTableEntry (const ImageTableEntry &)

Copy Constructor.
» ImageTableEntry & operator= (const ImageTableEntry &)

Assignment Constructor.

Image Details

+ const Imagelndex & Handle () const
Unique Image Handle within Index Table.
+ const std::uint32_t & Address () const
Byte Address of Start of Image data stored within the Controller's Memory.
» const int & NPts () const
the number of points in the Image
» constint & Size () const
the size of the Image in bytes
 const std::uint32_t & Format () const

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

174 Class Documentation

A Format Specifier relates the byte structure of the Image in Controller Memory to Image Physical Data.
« const std::array < std::uint8_t, 16 > & UUID () const

Image Unique Identifier can be used to synchronise Image Entries with host software Image objects.
« const std::string & Name () const

Descriptive Name assigned to an Image to aid User Recognition.

17.39.1 Detailed Description

An ImageTableEntry is created by the SDK on connecting to an iMS System, one for each Image that is stored in
Controller memory and allocated in the Image Index Table. Further ImageTableEntries are added to the table each
time an Image is downloaded to the Controller.

An ImageTableEntry should not be created by user software since it cannot be used to download Images to an iIMS
Controller and will not bear any relation to an existing Image on the Controller. Instead, an ImageDownload operation
should be performed on an Image object to send the Image data to Controller memory which will automatically
create the index data in the Image Index Table.

An ImageTableEntry can then be returned from an ImageTableViewer::operator [] function call into the IMSSystem
object.

This will result in being able to access relevant information about Images currently on the Controller, including Image
Memory Size, number of Image points, address in memory, Name etc.

The returned ImageTableEntry object may also be passed to either an ImagePlayer or ImageSequenceEntry object
to permit playback of Images on the Controller.
Author

Dave Cowan

Date
2016-04-03

Since

1.21

17.39.2 Constructor & Destructor Documentation
17.39.2.1 iMS::imageTableEntry::ImageTableEntry ()

Default Constructor.

It should not be necessary to construct an ImageTableEntry object since this will be done automatically by the SDK
on connection to an iMS System or after ImageDownload completes. Entries may then be referenced through the
ImageTableViewer class

17.39.3 Member Function Documentation
17.39.3.1 const std::uint32_t& iMS::ImageTableEntry::Address () const

Byte Address of Start of Image data stored within the Controller's Memory.

This is usually for information only as the ImageDownload class in conjunction with Controller firmware will select
a memory location with sufficient free capacity. User software is never responsible for memory management and
does not require the address for Image operations.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.39 iMS::imageTableEntry Struct Reference 175

Returns

an unsigned integer representing the absolute address of the Image in the Controller memory address space

17.39.3.2 const std::uint32_t& iMS::ImageTableEntry::Format () const

A Format Specifier relates the byte structure of the Image in Controller Memory to Image Physical Data.

An Image as created in application software consists of physical information such as "frequency of channel 1 at
Image Point 1000". This must be translated into a byte format that is understood by the hardware to create the RF
signal. There are a number of optimisations that can be performed to trade off between flexibility and update speed,
the mapping between real and physical Image data is described by the Format value.

Returns

an unsigned integer representing the Image Format

17.39.3.3 const Imagelndex& iMS::ImageTableEntry::Handle () const
Unique Image Handle within Index Table.

Returns

An Image handle referencing the location of the Image Entry within the Image Table

17.39.3.4 const std::string& iMS::ImageTableEntry::Name () const

Descriptive Name assigned to an Image to aid User Recognition.

Each Image can be assigned a descriptive name to help identify its purpose. The first 16 bytes are transferred to
the Controller during Image Download. The Name is optional and will return an empty string if not used. Be aware
that due to the 16 byte limitation, the Name returned from the ImageTableEntry may differ from the name assigned
to the Image in application software (whose length is unlimited).

Returns

a string object representing the description assigned to the Image

17.39.3.5 const int& iMS::ImageTableEntry::NPts () const
the number of points in the Image

Returns

the number of points in the Image

17.39.3.6 const int& iMS::ImageTableEntry::Size () const
the size of the Image in bytes

Returns

the size of the Image in bytes

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

176 Class Documentation

17.39.3.7 const std::array <std::uint8_t, 16> & iMS::ImageTableEntry::UUID () const

Image Unique Identifier can be used to synchronise Image Entries with host software Image objects.

Each Image created in application software is automatically assigned a Unique ID (UUID) which is updated anytime
the Image is modified. The UUID is downloaded to the Image Table along with the Image and can be used to
establish whether an Image resident in memory is identical to an Image present in application software, without
having to upload the Image data.

The UUID is also the mechanism that allows Sequences to be created from individual Images, either directly from
the Image object, or from Images in Controller memory via the ImageTableEntry.

Returns

a 16 byte array containing the Image UUID.

The documentation for this struct was generated from the following file:

* Image.h

17.40 iMS::ImageTableViewer Class Reference

Provides a mechanism for viewing the ImageTable associated with an iMS System.

#include <include\ImageOps.h>

Public Member Functions
Constructor

+ ImageTableViewer (const IMSSystem &ims)
Constructor for ImageTableViewer Object.

Image Table Information

+ const int Entries () const

Array operator for random access to ImageTableEntry s

» const ImageTableEntry operator[] (const std::size_t idx) const

The ImageTable consists of a container of ImageTableEntry objects. Each object may be accessed by calling the
viewer object through an array subscript.

Friends
» LIBSPEC std::ostream & operator<< (std::ostream &stream, const ImageTableViewer &)
Stream operator overload to simplify debugging.
17.40.1 Detailed Description
Provides a mechanism for viewing the ImageTable associated with an iMS System.

Author

Dave Cowan

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.40 iMS::imageTableViewer Class Reference 177

Date
2016-01-21

Since

1.1

17.40.2 Constructor & Destructor Documentation
17.40.2.1 iMS::ImageTableViewer::imageTableViewer (const IMSSystem & ims) [inline]

Constructor for ImageTableViewer Object.

The ImageTableViewer object requires an IMSSystem object, which will have had its ImageTable read back during
initialisation. It must therefore exist before the ImageTableViewer object, and must remain valid (not destroyed) until
the ImageTableViewer object itself is destroyed.

Once constructed, the object can neither be copied or assigned to another instance.

Parameters

in ims | A const reference to the iIMS System whose ImageTable is to be viewed.

Since

1.2

17.40.3 Member Function Documentation

17.40.3.1 const int iMS::ImageTableViewer::Entries () const

Returns

The current number of entries stored in the ImageTable

Since

1.2

17.40.3.2 const ImageTableEntry iMS::ImageTableViewer::operator[] (const std::size_t idx) const

The ImageTable consists of a container of ImageTableEntry objects. Each object may be accessed by calling the
viewer object through an array subscript.

For example:

ImageTableViewer itv (myiMS) ;

int length = 0;

for (int 1i=0; i<itv.Entries(); i++) {
length += itv[i].Size();

}

std::cout << "Used space in Image Memory: " << length << " bytes" << std::endl;

Since

1.1

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

178 Class Documentation

17.40.4 Friends And Related Function Documentation
17.40.4.1 LIBSPEC std::ostream& operator<< < (std::ostream & stream, const ImageTableViewer &) [friend]

Stream operator overload to simplify debugging.

Example usage:

ImageTableViewer itv (myiMS) ;
(itv.Entries () > 0) std::cout << itv;

might produce the result:

Image[0] id : O Addr : 0x00400000 Points : 10001 ByteLength : 440044 Format Code : O UUID : b31bdf48 - 0902
- 4277 - 86el - a6f0756a6acb

Image([l] id : 1 Addr : 0x0046b6f0 Points : 08501 ByteLength : 374044 Format Code : 0 UUID : 5e03d558 - 46e8
- 49c4 - 80cf - d32fb51d8628

Image[2] id : 2 Addr : 0x004c6cl0 Points : 12461 ByteLength : 548284 Format Code : O UUID : 7358b86c - 0e90
- 4664 - 8b2b - eelba24542da

The documentation for this class was generated from the following file:

* ImageOps.h

17.41 iMS::IMSController Class Reference

Stores Capabilities, Description, Model & Version Number of an iMS Controller.

#include <include/IMSSystem.h>

Classes

+ struct Capabilities

Returns information about the capabilities of the Controller hardware.

Public Member Functions

+ const Capabilities GetCap () const

Returns the Capabilities structure for the Controller.

+ const std::string & Description () const

Returns a descriptive string for the Controller.

+ const std::string & Model () const

Returns the short model number for the Controller.

» const FWVersion & GetVersion () const

Returns the firmware version for the Controller.

 const ImageTable & ImgTable () const

Returns the Image Index Table for the Controller.

« const bool IsValid () const

Returns true if the system scan successfully identified the Controller and initialised this Class.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.41 iMS::IMSController Class Reference 179

17.41.1 Detailed Description

Stores Capabilities, Description, Model & Version Number of an iMS Controller.

An IMSController class is a member of the IMSSystem class and contains valid information about an iMS Controller
if the ConnectionList::scan() function was able to successfully identify it.

The fields that can be read back to describe the controller can be used in Application code to select between
Controllers, display information about them or determine capabilities. The information is also used by internal
library functions to correctly format data and messages that are sent to the hardware.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.41.2 Member Function Documentation
17.41.2.1 const std::string& iMS::IMSController::Description () const
Returns a descriptive string for the Controller.

Since

1.0

17.41.2.2 const Capabilities iMS::IMSController::GetCap () const
Returns the Capabilities structure for the Controller.

Since

1.0

17.41.2.3 const FWVersion& iMS::IMSController::GetVersion () const

Returns the firmware version for the Controller.

Since

1.0

17.41.2.4 const ImageTable& iMS::IMSController::imgTable () const
Returns the Image Index Table for the Controller.

Since

1.2

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

180 Class Documentation

17.41.2.5 const bool iMS::IMSController::IsValid () const

Returns true if the system scan successfully identified the Controller and initialised this Class.

Returns

true if the class contains valid data representing an attached iMS Controller

Since

1.0

17.41.2.6 const std::string& iMS::IMSController::Model () const

Returns the short model number for the Controller.

Since

1.0

The documentation for this class was generated from the following file:

* IMSSystem.h

17.42 iMS::IMSOption Class Reference

An iMS Synthesiser can support one iMS Option, which adds an additional hardware function to the capabilities of
the Synthesiser.

#include <include/IMSSystem.h>

17.42.1 Detailed Description

An iMS Synthesiser can support one iMS Option, which adds an additional hardware function to the capabilities of
the Synthesiser.

One example of an iIMS Option is a Frequency Doubler, the iMS-FX2, which doubles the available range of frequen-
cies reproducible by the Synthesiser RF output.

Note

This class has not yet been implemented

Author

Dave Cowan

Date
2015-11-03

Since

1.0

The documentation for this class was generated from the following file:

* IMSSystem.h

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.43 iMS::IMSSynthesiser Class Reference

181

17.43 iMS::IMSSynthesiser Class Reference

Stores Capabilities, Description, Model & Version Number of an iMS Synthesiser.
#include <include/IMSSystem.h>

Collaboration diagram for iMS::IMSSynthesiser:

iMS::IMSOption

3

| AddOn
|

iMS::IMSSynthesiser

Classes

« struct Capabilities

Returns information about the capabilities of the Synthesiser hardware.

Public Member Functions

« const Capabilities GetCap () const

Returns the Capabilities structure for the Synthesiser.
+ const std::string & Description () const

Returns a descriptive string for the Synthesiser.
+ const std::string & Model () const

Returns the short model number for the Synthesiser.
+ const FWVersion & GetVersion () const

Returns the Firmware version for the Synthesiser.
+ const bool IsValid () const

Returns true if the system scan successfully identified the Synthesiser and initialised this Class.

« const FileSystemTable & FST () const
Returns the FileSystemTable for the Synthesiser.

Public Attributes

* IMSOption * AddOn

If there are any Options attached to the Synthesiser, these are accessed here, else a null pointer is returned.

17.43.1 Detailed Description

Stores Capabilities, Description, Model & Version Number of an iMS Synthesiser.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

182 Class Documentation

An IMSSynthesiser class is a member of the IMSSystem class and contains valid information about an iMS Synthe-
siser if the ConnectionList::scan() function was able to successfully identify it.

The fields that can be read back to describe the Synthesiser can be used in Application code to select between
Synthesisers, display information about them or determine capabilities. The information is also used by internal
library functions to correctly format data and messages that are sent to the hardware.

Author

Dave Cowan

Date

2015-11-03

Since

1.0

17.43.2 Member Function Documentation
17.43.2.1 const std::string& iMS::IMSSynthesiser::Description () const
Returns a descriptive string for the Synthesiser.

Since

1.0

17.43.2.2 const FileSystemTable& iMS::IMSSynthesiser::FST () const
Returns the FileSystemTable for the Synthesiser.

Since

1.1

17.43.2.3 const Capabilities iMS::IMSSynthesiser::GetCap () const
Returns the Capabilities structure for the Synthesiser.

Since

1.0

17.43.2.4 const FWVersion& iMS::IMSSynthesiser::GetVersion () const
Returns the Firmware version for the Synthesiser.

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.44 iMS::IMSSystem Class Reference

183

17.43.2.5 const bool iMS::IMSSynthesiser::IsValid () const

Returns true if the system scan successfully identified the Synthesiser and initialised this Class.

Returns

true if the class contains valid data representing an attached iMS Synthesiser

Since

1.0

17.43.2.6 const std::string& iMS::IMSSynthesiser::Model () const

Returns the short model number for the Synthesiser.

Since

1.0
The documentation for this class was generated from the following file:

* IMSSystem.h

17.44 iMS::IMSSystem Class Reference

An object representing the overall configuration of an attached iIMS System and permits applications to connect to

it.

#include <include/IMSSystem.h>

Public Member Functions

+ IConnectionManager xconst Connection () const

returns a pointer to an object which is the Connection through which all messages to the hardware go

« void Ctlr (const IMSController &)
Add an iMS Controller to the System. Intended for internal library use.
+ void Synth (const IMSSynthesiser &)
Add an iMS Synthesiser to the System. Intended for internal library use.
+ const IMSController & Ctlr () const
Retrieve data about the iMS Controller.
« const IMSSynthesiser & Synth () const
Retrieve data about the iMS Synthesiser.
» const std::string & ConnPort () const

Returns a descriptive string representing the connection port on which the iMS System was discovered.

* bool operator== (IMSSystem const &rhs) const
Tests for equality between two IMSSystem's.

Connect to / Disconnect from iMS Hardware

+ void Connect ()

Attempts to establish a Connection to an iMS System.
+ void Disconnect ()

Breaks a connection to an iMS System.
* bool Open () const

Tests Connection Status.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

184 Class Documentation

17.44.1 Detailed Description

An object representing the overall configuration of an attached iMS System and permits applications to connect to
it.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.44.2 Member Function Documentation
17.44.2.1 void iMS::IMSSystem::Connect ()

Attempts to establish a Connection to an iMS System.

Apart from scanning to identify attached iMS Systems (see ConnectionList::scan()), no interaction can occur with
an iMS System until a connection has been established to it. This can be done by calling the Connect() function.
Once established, the connection will remain open until Disconnect() is called.

Since

1.0

17.44.2.2 IConnectionManagerx const iMS::IMSSystem::Connection () const
returns a pointer to an object which is the Connection through which all messages to the hardware go

Warning

This function may be removed in a future release. Avoid using.

17.44.2.3 const std::string& iMS::IMSSystem::ConnPort () const
Returns a descriptive string representing the connection port on which the iMS System was discovered.

Since

1.0

17.44.2.4 void iMS::IMSSystem::Ctlr (const IMSController &)
Add an iMS Controller to the System. Intended for internal library use.

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.44 iMS::IMSSystem Class Reference 185

17.44.25 const IMSController& iMS::IMSSystem::Ctlr () const
Retrieve data about the iMS Controller.

Returns

a const reference to the IMSSystem's Controller class

Since

1.0

17.44.2.6 void iMS::IMSSystem::Disconnect ()

Breaks a connection to an iMS System.

Any existing connection to an iMS System can be terminated by calling the Disconenct() function. Any messages
that are pending but not yet sent will be completed before closing the connection, so the application can be sure
that any immediately preceding commands will be run to completion before the connection is closed.

Since

1.0

17.44.2.7 bool iMS::IMSSystem::Open () const

Tests Connection Status.

If an open connection exists to the iIMS System, this function will return true

Since

1.3

17.44.2.8 bool iMS::IMSSystem::operator== (IMSSystem const & rhs) const

Tests for equality between two IMSSystem's.

Since

1.3

17.44.2.9 void iMS::IMSSystem::Synth (const IMSSynthesiser &)

Add an iMS Synthesiser to the System. Intended for internal library use.

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

186 Class Documentation

17.44.2.10 const IMSSynthesiser& iMS::IMSSystem::Synth () const

Retrieve data about the iMS Synthesiser.

Returns

a const reference to the IMSSystem's Synthesiser class

Since

1.0

The documentation for this class was generated from the following file:

* IMSSystem.h

17.45 iMS::kHz Class Reference

Type Definition for all operations that require a frequency specification in kiloHertz.
#include <include/IMSTypeDefs.h>

Inheritance diagram for iMS::kHz:

iMS::Frequency

iMS::kHz

Collaboration diagram for iMS::kHz:

iMS::Frequency

iMS::kHz

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.45 iMS::kHz Class Reference 187

Public Member Functions

* kHz (double arg)

Construct a kHz object from a double argument representing kiloHertz.
» kHz & operator= (double arg)

Assignment of a double argument in kiloHertz to an existing Frequency object.
 operator double () const

Return a double representing the Frequency value in kiloHertz.

Additional Inherited Members

17.45.1 Detailed Description

Type Definition for all operations that require a frequency specification in kiloHertz.

kHz inherits from Frequency, which internally stores the value in Hertz.

Author

Dave Cowan

Date
2015-11-03

Since

1.0
17.45.2 Constructor & Destructor Documentation

17.45.2.1 iMS::kHz::kHz (doublearg) [inline]

Construct a kHz object from a double argument representing kiloHertz.

Parameters

in arg | Frequency in kiloHertz

Since

1.0

17.45.3 Member Function Documentation
17.45.3.1 iMS::kHz::operator double ()const [inline]

Return a double representing the Frequency value in kiloHertz.

Frequency f£1(3750.0);
kHz f2 = £1();
std::cout << "f2’'s Frequency is: " << £f2() << "kHz" << std::endl;

prints:

f2’s Frequency is 3.75kHz

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

188

Class Documentation

17.45.3.2 kHz& iMS::kHz::operator=(doublearg) [inline]

Assignment of a double argument in kiloHertz to an existing Frequency object.

kHz £;
f =1.0;
// £ contains 1000Hz

Since

1.3

The documentation for this class was generated from the following file:

* IMSTypeDefs.h

17.46 iMS::LibVersion Class Reference

Access the version information for the API.

#include <include/LibVersion.h>

Static Public Member Functions
Version Numbers

« static int GetMajor ()

Return the major version number, e.g., 1 for "1.2.3".
« static int GetMinor ()

Return the minor version number, e.g., 2 for "1.2.3".
« static int GetPatch ()

Return the patch version number, e.g., 3 for "1.2.3".
« static std::string GetVersion ()

Return the full version number.

Version Number Maths

« static bool IsAtLeast (int major, int minor, int patch)
Compare the current version number against a specific version.

Feature Tags

« static bool HasFeature (const std::string &name)
Test whether a feature is implemented by this API.

17.46.1 Detailed Description

Access the version information for the API.

For example, you can get the current version number as a string using GetVersion, or you can get the separate
major, minor and patch integer values by calling GetMajor, GetMinor, or GetPatch, respectively.

This class also provides some basic version comparison functionality and lets you determine if certained named

features are present in your current build.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.46 iMS::LibVersion Class Reference

189

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.46.2 Member Function Documentation
17.46.2.1 static int iMS::LibVersion::GetMajor () [static]

Return the major version number, e.g., 1 for "1.2.3".

Returns

The major version number as an integer

Since

1.0

17.46.2.2 static int iMS::LibVersion::GetMinor () [static]

Return the minor version number, e.g., 2 for "1.2.3".

Returns

The minor version number as an integer

Since

1.0

17.46.2.3 static int iMS::LibVersion::GetPatch() [static]

Return the patch version number, e.g., 3 for "1.2.3".

Returns

The patch version number as an integer

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

190 Class Documentation

17.46.2.4 static std::string iMS::LibVersion::GetVersion() [static]
Return the full version number.

Returns

The version string, e.g., "1.2.3"

Since

1.0

17.46.2.5 static bool iMS::LibVersion::HasFeature (const std::string & name) [static]

Test whether a feature is implemented by this API.

New features that change the implementation of APl methods are specified as "feature tags." This method lets you
query the API to find out if a given feature is available.

Parameters

in name | The feature tag name, e.g., "IMAGE_FILE"

Returns

Returns true if the named feature is available in this version

Since

1.0

17.46.2.6 static bool iMS::LibVersion::IsAtLeast (int major, int minor, int patch) [static]

Compare the current version number against a specific version.

This method lets you check to see if the current version is greater than or equal to the specified version. This may
be useful to perform operations that require a minimum version number.

Parameters
in major | The major version number to compare against
in minor | The minor version number to compare against
in patch | The patch version number to compare against
Returns

Returns true if the current API version >= (major, minor, patch)

Since

1.0

The documentation for this class was generated from the following file:

« LibVersion.h

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.47 iMS::ListBase< T > Class Template Reference 191

17.47 iMS::ListBase< T > Class Template Reference

Template Class encapsulating a list object and acting as a base list class for other classes in the library to inherit
from.

#include <include/Containers.h>

Public Member Functions

» bool operator== (ListBase const &rhs) const

Equality Operator checks ListBase object for equivalence.

Constructors & Destructor

+ ListBase (const std::string &Name="[no name]", const std::time_t &modified_time=std::time(nullptr))

Create a default empty List with optional name parameter.
» ~ListBase ()

Destructor.
+ ListBase (const ListBase &)

Copy Constructor.
+ ListBase & operator= (const ListBase &)

Assignment Constructor.

ListBase Unique Identifier

+ const std::array< std::uint8_t, 16 > GetUUID () const
Returns a vector representing the Unique Identifier assigned to the ListBase object.

Timestamping

+ const std::time_t & ModifiedTime () const

Returns Time at which the Container was last modified.
+ std::string ModifiedTimeFormat () const

Returns Human-readable string for the time at which the Container was last modified.

Container Description

+ const std::string & Name () const

A string stored with the Container to aid human users in identifying its purpose.
« std::string & Name ()

Modifiers

void assign (size_t n, const T &val)

Assign new content to ImageSequence list.
void push_front (const T &val)

Insert ImageSequenceEntry at beginning.
void pop_front ()

Delete first ImageSequenceEntry.
void push_back (const T &val)

Add ImageSequenceEntry at end.
void pop_back ()
Delete last ImageSequenceEntry.
iterator insert (iterator position, const T &val)

Insert ImageSequenceEntry.
iterator insert (iterator position, const_iterator first, const_iterator last)

Insert Range Of ImageSequenceEntry's.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

192 Class Documentation

* iterator erase (iterator position)

Erase ImageSequenceEntry.
* iterator erase (iterator first, iterator last)

Erase a range of ImageSequenceEntry's.
+ void resize (size_t n)

Change Size.
+ void clear ()

Clear Content.

Helper Functions

* bool empty () const

Returns True if the ListBase is empty.
« std::size_t size () const
Returns the Number of Entries in the ListBase.

Iterator Specification

Use these iterators when you want to iteratively read through or update the entries stored within a ListBase. lterators
can be used to access elements at an arbitrary offset position relative to the element they point to.

Two types of iterators are supported; both are random access iterators. Dereferencing const_iterator yields a
reference to a constant entry in the ListBase(const ListBase&).

« typedef std::list< T >:iterator iterator

Iterator defined for user manipulation of ListBase.
« typedef std::list< T >::const_iterator const_iterator

Const Iterator defined for user readback of ListBase.
* iterator begin ()

Returns an iterator pointing to the first element in the ListBase container.
* iterator end ()

Returns an iterator referring to the past-the-end element in the ListBase container.
» const_iterator begin () const

Returns a const_iterator pointing to the first element in the ListBase container.

const_iterator end () const

Returns a const_iterator referring to the past-the-end element in the ListBase container.
const_iterator cbegin () const

Returns a const_iterator pointing to the first element in the ListBase container.
const_iterator cend () const

Returns a const _iterator referring to the past-the-end element in the ListBase container.

17.47.1 Detailed Description
template <typename T>>class iMS::ListBase<< T >

Template Class encapsulating a list object and acting as a base list class for other classes in the library to inherit
from.

Date
2016-11-09

Since

1.3

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.47 iMS::ListBase< T > Class Template Reference 193

17.47.2 Member Function Documentation
17.47.2.1 template<typename T> void iMS::ListBase< T >::assign (size_tn, const T & val)

Assign new content to ImageSequence list.

Assigns new contents to the ImageSequence list container, replacing its current contents, and modifying its size
accordingly. the new contents are n elements, each initialized to a copy of val.

Parameters
in n | New size for the container.
in val | ImageSequenceEntry to fill the ImageSequence with. Each of the n elements
in the container will be initialized to a copy of this value.

17.47.2.2 template<typename T> iterator iMS::ListBase< T >::begin ()

Returns an iterator pointing to the first element in the ListBase container.

Returns

An iterator to the beginning of the ListBase container.

17.47.2.3 template<typename T> const_iterator iMS::ListBase< T >::begin () const

Returns a const_iterator pointing to the first element in the ListBase container.

Returns

A ListBase to the beginning of the ListBase container.

Since

1.25

17.47.2.4 template<typename T>> const_iterator iMS::ListBase< T >::chegin () const

Returns a const_iterator pointing to the first element in the ListBase container.

Returns

A const_iterator to the beginning of the ListBase container.

17.47.25 template<typename T>> const_iterator iMS::ListBase< T >::cend () const

Returns a const_iterator referring to the past-the-end element in the ListBase container.

Returns

A const_iterator to the element past the end of the ListBase.

17.47.2.6 template<typename T> void iMS::ListBase< T >::clear ()

Clear Content.

Removes all elements from the list container (which are destroyed), and leaving the ImageSequence with a size of
0.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

194 Class Documentation

17.47.2.7 template<typename T> bool iMS::ListBase< T >::empty () const
Returns True if the ListBase is empty.

Returns

True if the ListBase is empty

17.47.2.8 template<typename T> iterator iMS::ListBase< T >::end()

Returns an iterator referring to the past-the-end element in the ListBase container.

The past-the-end element is the theoretical element that would follow the last element in the ListBase container. It
does not point to any element, and thus shall not be dereferenced.

Because the ranges used by functions of the standard library do not include the element pointed by their closing
iterator, this function can be used in combination with ListBase::begin to specify a range including all the elements
in the container.

Returns

An iterator to the element past the end of the ListBase

17.47.2.9 template<typename T> const_iterator iMS::ListBase< T >::iend () const
Returns a const_iterator referring to the past-the-end element in the ListBase container.

Returns

A const_iterator to the element past the end of the ListBase.

Since

1.25

17.47.2.10 template<typename T> iterator iMS::ListBase< T >::erase (iterator position)

Erase ImageSequenceEntry.
Removes a single ImageSequenceEntry element (at position) from the list container

Parameters

in position | lterator pointing to a single element to be removed from the list.

Returns

An iterator pointing to the element that followed the last element erased by the function call. This is the
container end if the operation erased the last element in the sequence.

17.47.2.11 template<typename T>> iterator iMS::ListBase< T >::erase (iterator first, iterator last)

Erase a range of ImageSequenceEntry's.

Removes a range of ImageSequenceEntry elements (first,last) from the list container

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.47 iMS::ListBase< T > Class Template Reference 195

Parameters
in first | Iterators within the list to be removed.
in last | Iterators within the list to be removed.
Returns

An iterator pointing to the element that followed the last element erased by the function call. This is the
container end if the operation erased the last element in the sequence.

17.47.2.12 template<typename T> const std::array <std::uint8_t, 16> iMS::ListBase< T >::GetUUID () const
Returns a vector representing the Unique Identifier assigned to the ListBase object.

Returns

UUID as an array of uint8_t's

17.47.2.13 template<typename T>> iterator iMS::ListBase< T >::insert (iterator position, const T & val)

Insert ImageSequenceEntry.

The ImageSequence container is extended by inserting new elements before the element at the specified position.
This effectively increases the ImageSequence list size by one.

Parameters

in position | Position in the container where the new elements are inserted.

in val | ImageSequenceEntry Value to be copied (or moved) to the inserted elements.
Returns

An iterator that points to the first of the newly inserted elements.

17.47.2.14 template<typename T> iterator iMS::ListBase< T >::insert (iterator position, const_iterator first,
const_iterator last)

Insert Range Of ImageSequenceEntry's.

The ImageSequence container is extended by inserting new elements before the element at the specified position
from a range of ImageSequenceEntries present in another ImageSequence. This effectively increases the Image«
Sequence list size by the number of entries in the range

Parameters
in position | Position in the container where the new elements are inserted.
in first | lterator specifying the first of a range of elements.
in last | lterator specifying the last of a range of elements. All the elements between
first and last, including the element pointed by first but not the one pointed by
last are inserted to the ImageSequence before position.
Returns

An iterator that points to the first of the newly inserted elements.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

196 Class Documentation

17.47.2.15 template<typename T> const std::time_t& iMS::ListBase< T >::ModifiedTime () const

Returns Time at which the Container was last modified.

Any time the container is modified (added to, deleted from, elements updated), the system time is recorded. This
happens coincident with the UUID if the container also being updated. This function returns to the user that times-
tamp.

Returns

a reference to a std::time_t representing the time at which the container was last modified

Since

1.3

17.47.2.16 template<typename T>> std::string iMS::ListBase < T >::ModifiedTimeFormat () const
Returns Human-readable string for the time at which the Container was last modified.

Since

1.3

17.47.2.17 template<typename T> const std::string& iMS::ListBase< T >::Name () const

A string stored with the Container to aid human users in identifying its purpose.

Updating the Container Name does not cause the Container UUID to change.

17.47.2.18 template<typename T> bool iMS::ListBase < T >::operator==(ListBase< T > const & rhs) const

Equality Operator checks ListBase object for equivalence.

Parameters

in rhs | An ListBase object to perform the comparison with

Returns

True if the supplied ListBase is identical to this one.

17.47.2.19 template<<typename T>> void iMS::ListBase< T >::pop_back ()

Delete last ImageSequenceEntry.

Removes the last ImageSequenceEntry in the ImageSequence list container, effectively reducing its size by one.
This destroys the removed entry.

17.47.2.20 template<typename T> void iMS::ListBase< T >::pop_front ()

Delete first ImageSequenceEntry.

Removes the first ImageSequenceEntry in the ImageSequence list container, effectively reducing its size by one.
This destroys the removed entry.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.48 iMS::MHz Class Reference 197

17.47.2.21 template<typename T> void iMS::ListBase< T >::push_back (const T & val)

Add ImageSequenceEntry at end.

Adds a new ImageSequenceEntry at the end of the ImageSequence list container, after its current last element.
The content of val is copied (or moved) to the new element. This effectively increases the Sequence size by one.

Parameters

in \ val \ ImageSequenceEntry to be copied (or moved) to the new element.

17.47.2.22 template<typename T> void iMS::ListBase< T >::push_front (const T & val)

Insert ImageSequenceEntry at beginning.

Inserts a new element at the beginning of the list, right before its current first element. The content of val is copied
(or moved) to the inserted element. This effectively increases the Sequence size by one.

Parameters

] in \ val | ImageSequenceEntry to be copied (or moved) to the inserted element.

17.47.2.23 template<<typename T>> void iMS::ListBase< T >::resize (size_tn)

Change Size.

Resizes the ImageSequence container so that it contains n elements. If n is smaller than the current container size,
the content is reduced to its first n elements, removing those beyond (and destroying them). If n is greater than the
current container size, the content is expanded by inserting at the end as many elements as needed to reach a size
of n. The new ImageSequenceEntry 's are default-initialized. Notice that this function changes the actual content of
the container by inserting or erasing elements from it.

Parameters

in \ n | New container size, expressed in number of elements.

17.47.2.24 template<typename T>> std::size_t iMS::ListBase< T >::size () const

Returns the Number of Entries in the ListBase.

Returns

std::size_t representing the number of elements in the ListBase

The documentation for this class was generated from the following file:

« Containers.h

17.48 iMS::MHz Class Reference

Type Definition for all operations that require a frequency specification in MegaHertz.

#include <include/IMSTypeDefs.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

198 Class Documentation

Inheritance diagram for iMS::MHz:

iMS::Frequency
A

iMS::MHz

Collaboration diagram for iMS::MHz:

iMS::Frequency

iMS::MHz

Public Member Functions

* MHz (double arg)

Construct a MHz object from a double argument representing MegaHertz.
* MHz & operator= (double arg)

Assignment of a double argument in MegaHertz to an existing Frequency object.
 operator double () const

Return a double representing the Frequency value in MegaHertz.
Static Public Member Functions
« static unsigned int RenderAslmagePoint (const IMSSystem &, const MHz)

Used internally by the library to convert a Frequency object into a hardware-dependent integer representation used
by the Image for RF Output frequency.

17.48.1 Detailed Description

Type Definition for all operations that require a frequency specification in MegaHertz.

MHz inherits from Frequency, which internally stores the value in Hertz.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.48 iMS::MHz Class Reference

199

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.48.2 Constructor & Destructor Documentation

17.48.2.1 iMS::MHz::MHz (doublearg) [inline]

Construct a MHz object from a double argument representing MegaHertz.

Parameters

in arg | Frequency in MegaHertz

Since

1.0

17.48.3 Member Function Documentation
17.48.3.1 iMS::MHz::operator double ()const [inline]
Return a double representing the Frequency value in MegaHertz.

Frequency f1(1234567.0);
MHz f2 = f1();
std::cout << "f2's Frequency is: " << £f2() << "MHz" << std::endl;

prints:

f2’s Frequency is 1.234567MHz

Since

1.0

17.48.3.2 MHz& iMS::MHz::operator= (doublearg) [inline]

Assignment of a double argument in MegaHertz to an existing Frequency object.

MHz f;
f =1.0;
// £ contains 1,000,000Hz

Since

1.3

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

200 Class Documentation

17.48.3.3 static unsigned int iMS::MHz::RenderAsimagePoint (const IMSSystem &, constMHz) [static]

Used internally by the library to convert a Frequency object into a hardware-dependent integer representation used
by the Image for RF Output frequency.

Not intended for use in application code

The documentation for this class was generated from the following file:

* IMSTypeDefs.h

17.49 iMS::Percent Class Reference

Type Definition for all operations that require a percentage specification.

#include <include/IMSTypeDefs.h>

Public Member Functions

» Percent ()

Default Constructor assigns 0.0%.
* Percent (double arg)

Construct a Percent object from a double argument and check its value is within the range 0.0 <= arg <= 100.0. If
not, the object is still constructed, but the value is clipped to the upper or lower bound.

» Percent & operator= (double arg)

Assignment of a double argument in percent to an existing Percent object.
» operator double () const

Return a double representing the Percent object's value.

Static Public Member Functions

« static unsigned int RenderAslmagePoint (const IMSSystem &, const Percent)

Used internally by the library to convert a Percent object into a hardware-dependent integer representation used by
the Image for RF Output amplitude.

« static unsigned int RenderAsCompensationPoint (const IMSSystem &, const Percent)

Used internally by the library to convert a Percent object into a hardware-dependent integer representation used by
the Compensation Table for Compensation amplitude.

» static unsigned int RenderAsCalibrationTone (const IMSSystem &, const Percent)

Used internally by the library to convert a Percent object into a hardware-dependent integer representation used by
the Calibration Tone for Single Tone amplitude.

17.49.1 Detailed Description

Type Definition for all operations that require a percentage specification.

Internally, the Percent value is stored as a double precision variable and is bounds-limited to 0.0 <= Percent <=
100.0.

Author

Dave Cowan

Date
2015-11-03

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.49 iMS::Percent Class Reference 201

Since

1.0

17.49.2 Constructor & Destructor Documentation
17.49.2.1 iMS::Percent::Percent() [inline]
Default Constructor assigns 0.0%.

Since

1.1

17.49.2.2 iMS::Percent::Percent (doublearg) [inline]

Construct a Percent object from a double argument and check its value is within the range 0.0 <= arg <= 100.0. If
not, the object is still constructed, but the value is clipped to the upper or lower bound.

Parameters

in arg | The percentage value

Since

1.0

17.49.3 Member Function Documentation
17.49.3.1 iMS::Percent::operator double ()const [inline]
Return a double representing the Percent object's value.

Since

1.0

17.49.3.2 Percent& iMS::Percent::operator=(doublearg) [inline]

Assignment of a double argument in percent to an existing Percent object.

The double argument of the assigner must be within the range 0.0 <= arg <= 100.0 else it will be limited to those
bounds.

// In a group of 7 children, 3 of them have dark hair
Percent ChildrenWithDarkHair = (3.0 / 7.0) % 100.0;
std::cout << ChildrenWithDarkHair << "% of the group have dark hair" << std::endl;

prints:

42.8571% of the group have dark hair

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

202 Class Documentation

17.49.3.3 static unsigned int iMS::Percent::RenderAsCalibrationTone (const IMSSystem &, const Percent)
[static]

Used internally by the library to convert a Percent object into a hardware-dependent integer representation used by
the Calibration Tone for Single Tone amplitude.

Not intended for use in application code

Since

1.1.0

17.49.3.4 static unsigned int iMS::Percent::RenderAsCompensationPoint (const IMSSystem &, const Percent)
[static]

Used internally by the library to convert a Percent object into a hardware-dependent integer representation used by
the Compensation Table for Compensation amplitude.

Not intended for use in application code

17.49.3.5 static unsigned int iMS::Percent::RenderAsimagePoint (const IMSSystem &, const Percent) [static]
Used internally by the library to convert a Percent object into a hardware-dependent integer representation used by
the Image for RF Output amplitude.

Not intended for use in application code

The documentation for this class was generated from the following file:

* IMSTypeDefs.h

17.50 iMS::ImagePlayer::PlayConfiguration Struct Reference

This struct sets the attributes for the ImagePlayer to use when initiating an Image Playback.

#include <include\ImageOps.h>

Public Types

* using post_delay = std::chrono::duration< std::uint16_t, std::ratio< 1, 10000 > >

This type is used internally to define the correct scaling between std::chrono classes and the hardware delay counter.
Min Resolution is 0.1msec.

Public Member Functions
Constructors

 PlayConfiguration ()

Empty Constructor. All attributes take on their default values.
+ PlayConfiguration (PointClock c)

Constructor with Clock Initialisation. Use this to set the Clock to be supplied from an External signal.
+ PlayConfiguration (PointClock ¢, ImageTrigger t)

Constructor with Clock & Trigger Initialisation. Use this to set the Clock, Trigger or both to be supplied from External
signals.
+ PlayConfiguration (PointClock c, std::chrono::duration< int > d)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.51 iMS::RFChannel Class Reference 203

Constructor with Clock Initialisation and Post-Delay. Use this for a configurable delay between images.
+ PlayConfiguration (PointClock c, std::chrono::duration< int > d, Repeats r, int n_rpts)

Constructor with Clock Initialisation, Post-Delay and Image Repeats. Use this to configure the Clock source, Delay
between Image repeats and the number of Repeats per Image.
+ PlayConfiguration (Repeats r)

Constructor with Indefinite Repeats. Use this to set the Image to Repeat Always until Stopped by User Command.
» PlayConfiguration (Repeats r, int n_rpts)
Constructor with Programmable Repeats. Use this to set the Image to Repeat a programmable number of times.

Public Attributes

+ PointClock int_ext { PointClock::INTERNAL }

Use Internal NCO or External Clock signal.
» ImageTrigger trig { ImageTrigger::CONTINUOUS }

Trigger Next Image Immediately, after programmable delay, External Trigger signal or software Trigger.
» Repeats rpts { Repeats::NONE }
Run Image Once, Always until stopped, or a Programmable number of times.
e intn_rpts {0}
If Repeats set to Repeats::PROGRAM, this field sets the number of repeats to trigger (not including first pass, i.e.
n_rpts = 3 => 4 playbacks in total)
* Polarity clk_pol { Polarity::NORMAL }

Sets the active edge of the External Clock signal (Polarity::NORMAL = rising edge)
« Polarity trig_pol { Polarity::NORMAL }

Sets the active edge of the External Trigger signal (Polarity::NORMAL = rising edge)
» post_delay del {0}

When ImageTrigger is set to ImageTrigger::POST_DELAY, this field defines the length of time between the end of
one image (or repeat) and the start of the next. Use SetPostDelay(std::chrono::milliseconds(...)) or an associated
std::chrono class.

17.50.1 Detailed Description
This struct sets the attributes for the ImagePlayer to use when initiating an Image Playback.

Author

Dave Cowan

Date
2015-11-11

Since

1.0

The documentation for this struct was generated from the following file:

+ ImageOps.h

17.51 iMS::RFChannel Class Reference

Type that represents the integer values 1, 2, 3 and 4, one each for the RF Channels of an iMS Synthesiser.

#include <include/IMSTypeDefs.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

204 Class Documentation

Public Member Functions

* RFChannel ()

Default construct an RF Channel object initialised to the first RF Channel.

* RFChannel (int arg)
Construct an RF Channel object and check that it is being created with an integer value within the range 1 <= arg
<=4. If not, the object is still constructed, but the RF Channel value is set to 1 and an invalid_argument exception is
thrown.

« RFChannel & operator= (int arg)
Assignment of an integer argument to an existing RF Channel object.

* operator int () const

Return an integer representing the RF Channel that the object references.

* RFChannel & operator++ ()

Prefix and Postfix operators for (dec)incrementing through channels.
* RFChannel operator++ (int)
« RFChannel & operator-- ()
» RFChannel operator-- (int)

17.51.1 Detailed Description

Type that represents the integer values 1, 2, 3 and 4, one each for the RF Channels of an iMS Synthesiser.

The type is used to ensure that incorrect channel specifications cannot be passed to functions requiring an argument
referencing an RF output channel. Attempting to use an integer outside the range 1 <= arg <= 4 will result in R~
FChannel = 1 and an invalid_argument exception being thrown.

Exceptions

std:invalid_argument("— | RF Channel Number") Attempted to use an integer specification not tied to an RF
Invalid | Output Channel

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.51.2 Constructor & Destructor Documentation
17.51.2.1 iMS::RFChannel::RFChannel() [inline]

Default construct an RF Channel object initialised to the first RF Channel.

Since

1.1

17.51.2.2 iMS::RFChannel::RFChannel (intarg) [inline]

Construct an RF Channel object and check that it is being created with an integer value within the range 1 <= arg
<=4. If not, the object is still constructed, but the RF Channel value is set to 1 and an invalid_argument exception
is thrown.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.51 iMS::RFChannel Class Reference 205

Parameters

in arg | The channel specification

Exceptions

std::invalid_argument("— | RF Channel Number") Attempted to use an integer specification not tied to an RF
Invalid | Output Channel

Since

1.0

17.51.3 Member Function Documentation
17.51.3.1 iMS::RFChannel::operatorint()const [inline]

Return an integer representing the RF Channel that the object references.

Since

1.0

17.51.3.2 RFChannel& iMS::RFChannel::operator++() [inline]

Prefix and Postfix operators for (dec)incrementing through channels.

Since

1.1

17.51.3.3 RFChannel& iMS::RFChannel::operator=(intarg) [inline]

Assignment of an integer argument to an existing RF Channel object.

Checks that it is being created with an integer value within the range 1 <= arg <= 4. If not, the object is still
constructed, but the RF Channel value is set to 1 and an invalid_argument exception is thrown

Parameters

in arg \ The channel specification

Exceptions

std::invalid_argument("— | RF Channel Number") Attempted to use an integer specification not tied to an RF
Invalid | Output Channel

Since

1.0

The documentation for this class was generated from the following file:

* IMSTypeDefs.h

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

206 Class Documentation

17.52 iMS::SequenceManager::SeqConfiguration Struct Reference

This struct sets the attributes for the Sequence to use when initiating an Sequence Playback.

#include <include\ImageOps.h>

Public Member Functions

Constructors

+ SegConfiguration ()
Empty Constructor. All attributes take on their default values.
+ SegConfiguration (PointClock c)

Constructor with Clock Initialisation. Use this to set the Clock to be supplied from an External signal.
» SeqConfiguration (PointClock c, ImageTrigger t)

Constructor with Clock & Trigger Initialisation. Use this to set the Clock, Trigger or both to be supplied from External
signals.

Public Attributes

+ PointClock int_ext {PointClock::INTERNAL }

Use Internal NCO or External Clock signal.
+ ImageTrigger trig { ImageTrigger::CONTINUOUS }

Trigger Next Image Immediately, after programmable delay, External Trigger signal or software Trigger.
« Polarity clk_pol { Polarity::NORMAL }

Sets the active edge of the External Clock signal (Polarity::NORMAL = rising edge)
« Polarity trig_pol { Polarity::NORMAL }

Sets the active edge of the External Trigger signal (Polarity::NORMAL = rising edge)

17.52.1 Detailed Description

This struct sets the attributes for the Sequence to use when initiating an Sequence Playback.

Author

Dave Cowan

Date
2016-05-05

Since

1.24

The documentation for this struct was generated from the following file:

+ ImageOps.h

17.53 iMS::SequenceDownload Class Reference

This class is a worker for transmitting an ImageSequence to an iMS Controller and joining it to the back of the
sequence queue.

#include <include\ImageOps.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.53 iMS::SequenceDownload Class Reference 207

Public Member Functions

Constructor & Destructor

» SequenceDownload (IMSSystem &ims, const ImageSequence &seq)

Constructor for SequenceDownload Object.
» ~SequenceDownload ()

Destructor.

Download Trigger

* bool Download ()

Adds a new sequence to the end of the iMS Controller Sequence Queue.

17.53.1 Detailed Description

This class is a worker for transmitting an ImageSequence to an iMS Controller and joining it to the back of the

sequence queue.

Author

Dave Cowan

Date
2016-05-05

Since

1.24

17.53.2 Constructor & Destructor Documentation

17.53.2.1 iMS::SequenceDownload::SequenceDownload (IMSSystem & ims, const ImageSequence & seq)

Constructor for SequenceDownload Object.

The pre-requisites for an SequenceDownload object to be created are: (1) - an IMSSystem object, representing the
iMS target to which the ImageSequence is to be downloaded. (2) - a complete ImageSequence object to download

to the iMS target.

SequenceDownload stores references to both. This means that both must exist before the SequenceDownload
object, and both must remain valid (not destroyed) until the SequenceDownload object itself is destroyed. Because
they are stored as references, the IMSSystem and Image objects themselves may be modified after the construction
of the SequenceDownload object.

Once constructed, the object can neither be copied or assigned to another instance.

Parameters
in ims | Areference to the iIMS System which is the target for downloading the Image«
Sequence
in seq | A const reference to the ImageSequence which shall be downloaded to the
target
Since
124

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

208 Class Documentation

17.53.3 Member Function Documentation
17.53.3.1 bool iMS::SequenceDownload::Download ()

Adds a new sequence to the end of the iIMS Controller Sequence Queue.

Calling this function will program the list of ImageSequenceEntry's and the termination action/value from the
ImageSequence object reference into a new sequence added to the end of the Sequence Queue.

Returns

True to indicate Sequence has been successfully added to the queue

The documentation for this class was generated from the following file:

+ ImageOps.h

17.54 iMS::SequenceEvents Class Reference

All the different types of events that can be triggered by the SequenceManager class.

#include <include\ImageOps.h>

Public Types
» enum Events { SEQUENCE_START, SEQUENCE_FINISHED, SEQUENCE_ERROR, Count }
List of Events raised by the Image Downloader.

17.54.1 Detailed Description

All the different types of events that can be triggered by the SequenceManager class.

Some events contain integer parameter data which can be processed by the IEventHandler::EventAction derived
method

Author

Dave Cowan

Date
2016-05-04

Since

1.24

17.54.2 Member Enumeration Documentation
17.54.2.1 enum iMS::SequenceEvents::Events
List of Events raised by the Image Downloader.

Enumerator

SEQUENCE_START Event raised at the beginning of playback of each sequence.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.55 iMS::SequenceManager Class Reference 209

SEQUENCE_FINISHED Event raised after the final image of a sequence has completed and there are no
more sequences in the queue, or the sequence was programmed to stop.

SEQUENCE_ERROR Event raised when an error occurs in processing the sequence queue (typically if the
sequence queue was cleared during playback)

The documentation for this class was generated from the following file:

+ ImageOps.h

17.55 iMS::SequenceManager Class Reference

#include <include\ImageOps.h>

Collaboration diagram for iMS::SequenceManager:

iMS::SequenceManager
::SeqConfiguration

\

| cfg
|

iMS::SequenceManager

Classes

« struct SeqConfiguration

This struct sets the attributes for the Sequence to use when initiating an Sequence Playback.

Public Types

« using PointClock = ImagePlayer::PointClock
Defines Internal Oscillator / External Clock operation.

+ using ImageTrigger = ImagePlayer::lmageTrigger
Defines Image Trigger function.

« using Polarity = ImagePlayer::Polarity

Defines polarity of external clock / trigger signals.

Public Member Functions
Constructors & Destructor
» SequenceManager (const IMSSystem &)

Default Constructor.
» ~SequenceManager ()

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

210 Class Documentation

Destructor.

Playback Operations

* bool StartSequenceQueue (const SeqConfiguration &cfg=SeqConfiguration(), ImageTrigger start_«
trig=ImageTrigger::CONTINUOUS)
Begins playback through the sequence queue.
+ void SendHostTrigger ()

Software trigger for sequence Image propagation When either SeqConfiguration::trig or start_trig are set to
ImageTrigger::HOST, the application software must send a signal to the hardware to begin playback of either
the next Image in the sequence, or the first image in the sequence respectively.

Queue Modification

+ std::uint16_t QueueCount ()
Number of Sequences programmed into the Queue.
bool GetSequenceUUID (int index, std::array< std::uint8_t, 16 > &uuid)
Returns the identity of a particular sequence via its index in the Controller sequence queue.
* bool QueueClear ()
Remove all sequences from the queue.
* bool RemoveSequence (const ImageSequence &seq)
Remove an individual sequence from the queue.
* bool RemoveSequence (const std::array<< std::uint8_t, 16 > &uuid)
Remove an individual sequence from the queue.
* bool UpdateTermination (ImageSequence &seq, SequenceTermAction action, int val=0)
Update the termination behaviour of a specific sequence.
* bool UpdateTermination (const std::array< std::uint8_t, 16 > &uuid, SequenceTermAction action, int
val=0)
Update the termination behaviour of a specific sequence.

Public Attributes

« struct LIBSPEC iMS::SequenceManager::SeqConfiguration cfg

Defines the configuration for Sequence Playback.

Sequence Event Signalling

If the user application requires that new sequences are created and downloaded to the Sequence Queue while
playback is operational, it may be advantageous to configure the SequenceManager to inform the application when
sequences complete or when the sequence queue has emptied. To do that, create an EventHandler derived class
in your code and subscribe it to the SequenceManager using these functions and one of the SequenceEvent mes-
sages. The handler will be called at the relevant time which will allow the application to synchronously update the
Controller sequence queue with new information.

Warning

Subscribing to sequence events turns on the interrupt sending mechanism in the Controller in order to guar-
antee minimum latency from the event occurrence. Since this involves sending Controller initiated messages
to the SDK, it is inadvisable to subscribe to the SEQUENCE_START event if sequences are expected to be
started at a rate greater than approx once every 10msec, as buffer overruns can occur which will lead to the
breakdown of communications between the SDK and the iMS System.

+ void SequenceEventSubscribe (const int message, |IEventHandler xhandler)

Subscribe a callback function handler to a given SequenceManager event.
+ void SequenceEventUnsubscribe (const int message, const IEventHandler <handler)

Unsubscribe a callback function handler from a given SequenceManager event.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.55 iMS::SequenceManager Class Reference 211

17.55.1 Detailed Description

Author

Dave Cowan

Date
2016-05-04

Since

1.24

17.55.2 Constructor & Destructor Documentation
17.55.2.1 iMS::SequenceManager::SequenceManager (const IMSSystem &)

Default Constructor.

Requires a reference to an iIMS System in order to carry out communications with the Sequence Queue in the
Controller

17.55.3 Member Function Documentation
17.55.3.1 bool iMS::SequenceManager::GetSequenceUUID (int index, std::array< std::uint8_t, 16 > & uuid)

Returns the identity of a particular sequence via its index in the Controller sequence queue.

Every ImageSequence has a unique ID, which is downloaded to the Controller sequence queue so that, although
it is not possible to readback the configuration of every sequence in the queue, it is possible to match the UUID of
every sequence with the UUID of an ImageSequence object stored in the application.

Parameters
in index | The offset from the front of the queue from which to retrieve the UUID (0 =
Sequence currently playing or next to play if stopped)
in uuid | A reference to a 16-byte array in which to store the UUID
Returns

True if the operation completed successfully

17.55.3.2 bool iMS::SequenceManager::QueueClear ()

Remove all sequences from the queue.

If the sequence queue is currently playing, this function call will fail and return false

Returns

True if the queue was successfully cleared

17.55.3.3 std::uint16_t iMS::SequenceManager::QueueCount ()

Number of Sequences programmed into the Queue.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

212 Class Documentation

Returns

the number of sequences that are currently in the Controller queue

17.55.3.4 bool iMS::SequenceManager::RemoveSequence (const ImageSequence & seq)

Remove an individual sequence from the queue.

Removes an ImageSequence from anywhere within the sequence queue. If attempting to remove the sequence
from the front of the queue, while it is playing, the operation will still succeed but subsequent behaviour may be
undefined. If multiple identical sequences exist in the queue, the sequence most recently added (or most recently
played) will be deleted. The function must be called multiple times to remove multiple sequences

Parameters

] in \ seq \ A reference to an ImageSequence object to find in the queue and remove

Returns

True if the removal was carried out successfully

17.55.3.5 bool iMS::SequenceManager::RemoveSequence (const std::array< std::uint8_t, 16 > & uuid)

Remove an individual sequence from the queue.

Removes an ImageSequence from anywhere within the sequence queue. If attempting to remove the sequence
from the front of the queue, while it is playing, the operation will still succeed but subsequent behaviour may be
undefined. If multiple identical sequences exist in the queue, the sequence most recently added (or most recently
played) will be deleted. The function must be called multiple times to remove multiple sequences

Parameters
in uuid | Anidentifier that can be returned from GetSequenceUUID to mark a sequence
for deletion
Returns

True if the removal was carried out successfully

17.55.3.6 void iMS::SequenceManager::SequenceEventSubscribe (const int message, IEventHandler « handler)

Subscribe a callback function handler to a given SequenceManager event.

SequenceManager can callback user application code when an event occurs in the sequence playback process.
Supported events are listed under SequenceEvents. The callback function must inherit from the |IEventHandler
interface and override its EventAction() method.

Use this member function call to subscribe a callback function to an SequenceManager event. For the period that
a callback is subscribed, each time an event in the Controller sequence playback occurs that would trigger the
subscribed SequenceManager event, the user function callback will be executed.

Parameters
in message | Use the SequenceEvents::Event enum to specify an event to subscribe to
in handler | A function pointer to the user callback function to execute on the event trigger.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.55 iMS::SequenceManager Class Reference 213

17.55.3.7 void iMS::SequenceManager::SequenceEventUnsubscribe (const int message, const IEventHandler « handler)

Unsubscribe a callback function handler from a given SequenceManager event.

Removes all links to a user callback function from the Event Trigger map so that any events that occur in the
Controller sequence playback following the Unsubscribe request will no longer execute that function

Parameters
in message | Use the SequenceEvents::Event enum to specify an event to unsubscribe from
in handler | A function pointer to the user callback function that will no longer execute on
an event

17.55.3.8 bool iMS::SequenceManager::StartSequenceQueue (const SeqConfiguration & cfg = SeqConfiguration (),
ImageTrigger start _trig =ImageTrigger::CONTINUOUS)

Begins playback through the sequence queue.

The iMS Controller will start playing the ImageSequenceEntry that exists at the front of the Sequence Queue. If the
queue is empty, the call will have no effect, but may still return true. Use the QueueCount() function if it is necessary
to check for queue contents prior to playback. Image playback will continue through each ImageSequenceEntry
and ImageSequence in turn until it either encounters an ImageSequence with a 'STOP_x' termination action or the
queue becomes empty.

The queue behaviour may be controlled by the SeqConfiguration struct, which specifies whether the Sequence is
clocked by the internal NCO oscillator or an external clock and what method is used to propagate the start of the
next ImageSequenceEntry in the list.

The start_trig parameter may be used to control how the Sequence playback begins. If set to CONTINUOUS (or
not specified) Sequence playback will start immediately. If set to EXTERNAL, Sequence playback will start when
an External trigger is detected. If set to HOST, Sequence playback will begin when a software trigger is sent (Using
SendHostTrigger()).

Parameters
in cfg | The clocking and trigger configuration for propagating through images in the
sequence
in start _trig | the type of trigger used to begin the sequence playing back
Returns

true whe the Sequence playback has been initiated

17.55.3.9 bool iMS::SequenceManager::UpdateTermination (ImageSequence & seq, SequenceTermAction action, int
val=0)

Update the termination behaviour of a specific sequence.

This function is used to change the behaviour of a sequence after it has completed playback. It can be used for
example to modify a sequence set to RECYCLE mode so that next time it plays back, it is instead DISCARDed. If
multiple identical sequences exist in the queue, the sequence most recently added (or most recently played) will be
updated.

Parameters

] in \ seq | Areference to an ImageSequence object to find in the queue and update

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

214 Class Documentation

in action | The new action value to program the ImageSequence with
in val | An optional Termination value to apply to the sequence
Returns

True if the update was carried out successfully

17.55.3.10 bool iMS::SequenceManager::UpdateTermination (const std::array< std::uint8_t, 16 > & uuid,
SequenceTermAction action, int val=0)

Update the termination behaviour of a specific sequence.

This function is used to change the behaviour of a sequence after it has completed playback. It can be used for
example to modify a sequence set to RECYCLE mode so that next time it plays back, it is instead DISCARDed. If
multiple identical sequences exist in the queue, the sequence most recently added (or most recently played) will be
updated.

Parameters
in uuid | Anidentifier that can be returned from GetSequenceUUID to mark a sequence
for update
in action | The new action value to program the ImageSequence with
in val | An optional Termination value to apply to the sequence
Returns

True if the update was carried out successfully

The documentation for this class was generated from the following file:

* ImageOps.h

17.56 iMS::SignalPath Class Reference

Controls Signal routing and other parameters related to the RF output signals.

#include <include\SignalPath.h>

Public Types

» enum AmplitudeControl { AmplitudeControl::OFF, AmplitudeControl::EXTERNAL, AmplitudeControl::WIPE«
R_1, AmplitudeControl::WIPER_2 }

Selects Amplitude Control source for each of the 4 RF Channel outputs.
» enum ToneBufferControl { ToneBufferControl::HOST, ToneBufferControl::EXTERNAL, ToneBufferControl::«+
EXTERNAL_EXTENDED, ToneBufferControl::OFF }

Selects Control Source for the Local Tone Buffer.
» enum Compensation : bool { Compensation::ACTIVE = true, Compensation::BYPASS = false }

Controls whether to use the Compensation Look-Up Table path for pixel data.
* enum SYNC_SRC {
FREQUENCY_CH1, FREQUENCY_CH2, FREQUENCY_CH3, FREQUENCY_CH4,
AMPLITUDE_CH1, AMPLITUDE_CH2, AMPLITUDE_CH3, AMPLITUDE_CH4,
AMPLITUDE_PRE_COMP_CH1, AMPLITUDE_PRE_COMP_CH2, AMPLITUDE_PRE_COMP_CH3, AM«
PLITUDE_PRE_COMP_CH4,
PHASE_CH1, PHASE_CH2, PHASE_CH3, PHASE_CH4,
LOOKUP_FIELD_CH1, LOOKUP_FIELD_CH2, LOOKUP_FIELD_CH3, LOOKUP_FIELD_CH4,
IMAGE_ANLG_A, IMAGE_ANLG_B, IMAGE_DIG }

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.56 iMS::SignalPath Class Reference 215

Selects a source of Synchronous Output Data.
» enum SYNC_SINK { ANLG_A, ANLG_B, DIG }

The Synchronous Output to which to assign Synchronous Data.
» enum ENCODER_MODE { QUADRATURE, COUNT_DIRECTION }

Selects the type of encoder connected to the Synthesiser.
» enum VELOCITY_MODE { FAST, SLOW }

Selects the method of velocity calculation.
* enum ENCODER_CHANNEL { CH_X, CH_Y }

Selects which of two available encoder channels.

Public Member Functions
Constructor & Destructor

+ SignalPath (const IMSSystem &ims)

Constructor for SignalPath Object.
» ~SignalPath ()

Destructor for SignalPath Object.

RF Output Control

* bool UpdateDDSPowerLevel (const Percent &power)

Scales the DDS device (Direct Digital Synthesis RF signal generator) power up & down.
* bool UpdateRFAmplitude (const AmplitudeControl src, const Percent &l)

Scales the Digital Potentiometer mixer drive level up & down.
* bool SwitchRFAmplitudeControlSource (const AmplitudeControl src)

Selects the amplitude control source for all 4 RF channels.
* bool UpdatePhaseTuning (const RFChannel &channel, const Degrees &phase)

Applies a constant Phase offset to one of the 4 RF Channels.
* bool SetChannelReversal (bool reversal)

Reverses the channel order of the 4 RF Outputs.
» bool EnablelmagePathCompensation (SignalPath::Compensation amplComp, SignalPath::Compensation
phaseComp)

Enables / Disables the programmed amplitude and phase Compensation Functions for Image Playback.
* bool EnableXYPhaseCompensation (bool XYCompEnable)

Configures Beam Steering Phase Compensation for X/Y Deflector Mode.

Calibration Functions

* bool SetCalibrationTone (const FAP &fap)

Bypasses Controller Data and Compensation Tables and plays a fixed tone for calibration purposes.
* bool ClearTone ()

Stops the tone playback and restores the signal path configuration to the Controller and Compensation Tables.

Synchronous Output Control

* bool AssignSynchronousOutput (const SYNC_SINK &sink, const SYNC_SRC &src) const

Selects the source of data for the 2 Analog and 12 Digital output signals that operate synchronously with the Image
Pixel Clock.
* bool ConfigureSyncDigitalOutput (::std::chrono::nanoseconds delay=::std::chrono::nanoseconds«
::zero(),::std::chrono::nanoseconds pulse_length=::std::chrono::nanoseconds::zero())

Configures the Synchronous Digital Output data.

Local Tone Buffer Functions

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

216 Class Documentation

* bool UpdateLocalToneBuffer (const ToneBufferControl &tbc, const unsigned int index, const SignalPath«
::Compensation AmplitudeComp=SignalPath::Compensation::ACTIVE, const SignalPath::Compensation
PhaseComp=SignalPath::Compensation::ACTIVE)

Use these functions to output tones from the Local Tone Buffer, control their selection and compensation.
 bool UpdateLocalToneBuffer (const ToneBufferControl &tbc)
* bool UpdatelLocalToneBuffer (const SignalPath::Compensation AmplitudeComp, const SignalPath::«
Compensation PhaseComp)
* bool UpdateLocalToneBuffer (const unsigned int index)

Velocity / Encoder Compensation Functions

Some iMS Synthesisers include dual optical encoder inputs and built in tracking filters that can be used to
monitor the velocity of a moving object in two dimensions, compensate the RF frequency by a scaled amount to
alter the AOD deflection angle and hence remove distortion from the target feature.

Each of the 2 encoder inputs has a pair of RS422 receivers and can be configured to work with both quadrature
(for best precision) and clock + direction style encoder signals. The encoder inputs are passed through a glitch
filter to remove any excursions < 30ns before being decoded to extract a pulse train and to identify direction of
travel.

This information is fed into a tracking loop filter that both attenuates noise from the signal and calculates an
estimate for the encoder velocity (in encoder ticks per second). The filter has a number of parameters that can
be adjusted for optimum performance. The transfer function of the filter is:

H(s) = ((kp / 1.ki).s + 1)/ ((1/1.ki).s"2 + (kp / l.ki).s + 1)

where:

* kp = the proportion gain coefficient
* Ki = the integral gain coefficient
| = a constant correction factor = 65535 / 687 = 95.393

* s = the Laplace operator

The resulting X and Y velocity estimates are applied to the pixel subsystem where they are scaled by a gain
coefficient and used to offset the RF channel output frequency from the value requested by Image data, Single
Tone or Tone Buffer. The offset is applied as follows:

« (1) If XY Phase compensation is enabled (see EnableXYPhaseCompensation), offsets from Encoder input
X are applied to RF Channels 1 and 2, offsets from Encoder input Y are applied to RF Channels 3 and 4.

« (2) If X/Y Phase compensation is not enabled, offsets from Encoder input X are applied to all RF Channels
and Encoder input Y is ignored.

Note that negative gains are allowed which result in frequency offsets in the opposite direction.

* bool UpdateEncoder (const VelocityConfiguration &velcomp)

UpdateEncoder enables the Encoder velocity offset correction and updates the parameters.
* bool DisableEncoder ()

Turns off the Velocity Compensation process.
* bool ReportEncoderVelocity (ENCODER_CHANNEL chan)

Retrieves the current angular velocity of the requested encoder channel.

Event Notifications

+ void SignalPathEventSubscribe (const int message, |IEventHandler xhandler)

Subscribe a callback function handler to a given SignalPathEvents event.
« void SignalPathEventUnsubscribe (const int message, const IEventHandler xhandler)

Unsubscribe a callback function handler from a given SignalPathEvents event.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.56 iMS::SignalPath Class Reference 217

17.56.1 Detailed Description

Controls Signal routing and other parameters related to the RF output signals.

The iMS Signal Path consists of Frequency, Amplitude, Phase and Synchronous Output data driven by the Con-
troller, or generated internally by the Synthesiser, passing through the Compensation Tables, and driven by the DDS
device to result in 4 RF signal outputs along with analogue and digital synchronous outputs.

This class provides functions that control the routing options of that data and functions that control the attributes of
the signals within the signal path.
Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.56.2 Member Enumeration Documentation
17.56.2.1 enum iMS::SignalPath::AmplitudeControl [strong]

Selects Amplitude Control source for each of the 4 RF Channel outputs.

The RF signal outputs from the Synthesiser feature channel bandwidth filtering and an RF mixer with a selectable
control source. The mixer input can be routed to one of two digital potentiometers on the Synthesiser, which act as
amplitude controls, turned off, or to an external signal input (scalable range from 0 - 15V) for signal modulation.

Enumerator
OFF Turn RF outputs off.
EXTERNAL Route RF mixer inputs to analogue modulation external signals.

WIPER_1 Connect RF mixer inputs to digital pot wiper 1.
WIPER_2 Connect RF mixer inputs to digital pot wiper 2.

17.56.2.2 enum iMS::SignalPath::Compensation : bool [strong]

Controls whether to use the Compensation Look-Up Table path for pixel data.

The Synthesiser includes a Compensation system for correcting amplitude non-linearities in the RF signal path,
generating inter-channel phase data for beam steered applications, and synchronous digital and analogue output
signals all as a function of the current active pixel frequency. The Compensation table can be in circuit (active) or
bypassed for both the normal pixel path from the Controller Image and also for the Local Tone Buffer used on the
Synthesiser.

Since

1.1

Enumerator

ACTIVE Use the Compensation Look-up Path.
BYPASS Do not use the Compensation Look-up Path.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

218 Class Documentation

17.56.2.3 enum iMS::SignalPath::ENCODER_CHANNEL [strong]

Selects which of two available encoder channels.

The Rotary Encoder input has two channels, each comprising a pair of RS422 differential signals. The signal pairs
are decoded by the rotary encoder block into a sequence of forward and reverse pulses which are processed to
calculate a tick velocity, which can be converted to angular velocity through knowledge of the number of pulses per
revolution (ppr) of the encoder.

Normally, only the first encoder is used and the velocity value used to compensate the frequency on all 4 channels
of the synthesiser. However, in the case where the Synthesiser is configured for X/Y deflection, the first encoder
input affects Synthesiser channels 1 and 2 and the second encoder input affects Synthesiser channels 3 and 4.

Since

1.4

17.56.24 enum iMS::SignalPath::ENCODER_MODE [strong]

Selects the type of encoder connected to the Synthesiser.

The preferred mode of operation is quadrature, in which the two encoder signals output a pulse train in which the
second electrically leads or lags the other by 90 degrees, depending on the direction of rotation. This mode gives
the best resolution.

The alternative mode: Count+Direction ouputs a single pulse train with the second signal indicating the direction of
rotation ('1' = forward, '0' = reverse)

Since

1.4

17.56.2.5 enum iMS::SignalPath::SYNC_SINK [strong]

The Synchronous Output to which to assign Synchronous Data.

Since

1.1

17.56.2.6 enum iMS::SignalPath::SYNC_SRC [strong]

Selects a source of Synchronous Output Data.

Since

1.1

17.56.2.7 enum iMS::SignalPath::ToneBufferControl [strong]

Selects Control Source for the Local Tone Buffer.

The Local Tone Buffer (LTB) in the synthesiser contains 256 individually selectable TBEntry Entries. Each entry
contains Frequency, Amplitude and Phase data for each of the 4 channels independently. The index into the LTB
can be chosen from either software control, or one of two external control modes. In the standard external control
mode, the 4 PROFILE input signals are used to index the first 16 TBEntrys in the LTB. In the extended external
control mode, the 4 PROFILE input signals are used in conjunction with the GPI1 and GPO1 control signals to
enable selection of all 256 LTB TBEntries as 16 "pages" of 16 Entries each.

If none of these 3 modes is selected, the normal Image Path drives the Synthesiser outputs.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.56 iMS::SignalPath Class Reference 219

Since
1.1
Enumerator

HOST The Local Tone Buffer is routed to the Synthesiser. Index updates are controlled from host software.

EXTERNAL The Local Tone Buffer is routed to the Synthesiser (first 16 entries only). LTB is indexed from
PROFILE pin inputs.

EXTERNAL_EXTENDED The Local Tone Buffer is routed to the Synthesiser (all 256 entries available). Index
page and Entry select controlled from PROFILE pin inputs.

OFF Local Tone Buffer not used. Synthesiser outputs from Image data.

17.56.2.8 enum iMS::SignalPath::VELOCITY_MODE [strong]

Selects the method of velocity calculation.

The rotary encoder input is connected to a tracking loop filter which calculates the current angular velocity of the
encoder shaft, in ticks / second. The loop filter can generate two different estimates of the current velocity with
different characteristics, without altering the behaviour of the filter response.

The first is the closest approximation to the filter state and has a fast response but a higher noise profile which may
lead to low level frequency modulation on the DDS output signal.

The second has a much slower response (typically 1-2 orders of magnitude) but a cleaner spectrum.

Since

1.4

17.56.3 Constructor & Destructor Documentation
17.56.3.1 iMS::SignalPath::SignalPath (const IMSSystem & ims)

Constructor for SignalPath Object.

An IMSSystem object, representing the configuration of an iMS target must be passed by const reference to the
SignalPath constructor.

The IMSSystem object must exist before the SignalPath object, and must remain valid (not destroyed) until the
SignalPath object itself is destroyed.

Once constructed, the object can neither be copied or assigned to another instance.

Parameters

in ims | A const reference to the iMS System

Since

1.0

17.56.4 Member Function Documentation
17.56.4.1 bool iMS::SignalPath::AssignSynchronousOutput (const SYNC_SINK & sink, const SYNC_SRC & src) const

Selects the source of data for the 2 Analog and 12 Digital output signals that operate synchronously with the Image
Pixel Clock.

Since

1.1

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

220 Class Documentation

17.56.4.2 bool iMS::SignalPath::ClearTone ()

Stops the tone playback and restores the signal path configuration to the Controller and Compensation Tables.

Returns

true if the clear tone request was sent successfully

Since

1.0

17.56.4.3 bool iMS::SignalPath::ConfigureSyncDigitalOutput (::std::chrono::nanoseconds delay =
::std::chrono: :nanoseconds: :zero (), :std::chrono::nanoseconds pulse_length =
::std::chrono: :nanoseconds: :zero ())

Configures the Synchronous Digital Output data.

Synchronous Digital output data is usually time aligned with the update of RF Channel data output and remains
valid for the duration of the image pixel clock period. There are two options to this:

(1) The assertion of Synchronous Digital output data can be delayed with respect to the RF signal by any number of
nanoseconds that is less than 655360ns and has a minimum resolution of 10ns. (2) The synchronous digital output
bits can be set to "pulse mode" - they return to inactive after a defined time period. The period may be any number
of nanoseconds that is less than 655360ns and has a minimum resolution of 10ns.

Parameters
in delay | the number of nanoseconds to delay the onset of synchronous digital output
data
in pulse_length | the width of the digital output data pulse (or zero to disable)
Returns

true if the syncronous digital output data configuration request was sent successfully

Since

1.4

17.56.4.4 bool iMS::SignalPath::DisableEncoder ()

Turns off the Velocity Compensation process.

Since

1.4

17.56.4.5 bool iMS::SignalPath::EnablelmagePathCompensation (SignalPath::Compensation amp/Comp,
SignalPath::Compensation phaseComp)

Enables / Disables the programmed amplitude and phase Compensation Functions for Image Playback.

Image Pixel data pass through a Compensation process in the Synthesiser which performs amplitude corrections
and phase adjustment for beam steering applications as a function of the programmed frequency. The Compensa-
tion tables must be programmed either from software, or from a look-up table stored in the Synthesiser FileSystem.
If no compensation table has been programmed, or the application does not wish to use Compensation, the process
can be bypassed by calling this function with the appropriate settings for amplitude and phase.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.56 iMS::SignalPath Class Reference 221

Parameters
in amplComp | Set to SignalPath::Compensation::BYPASS or SignalPath::Compensation::«
ACTIVE for amplitude compensation (frequency dependent correction)
in phaseComp | Set to SignalPath::Compensation::BYPASS or SignalPath::Compensation::«
ACTIVE for phase compensation (frequency dependent beam steering)
Returns

true if the compensation request was sent successfully

Since

1.3

17.56.4.6 bool iMS::SignalPath::EnableXYPhaseCompensation (bool XYCompEnable)

Configures Beam Steering Phase Compensation for X/Y Deflector Mode.

Normal phase beam steering configures the 4 RF Channel outputs for incremental phase adjustment so that channel
1 has zero phase, channel 2 has a frequency dependent phase offset with respect to channel 1, channel 3 has twice
the phase offset and channel 4 has three times the phase offset.

In an X/Y deflector configuration, the first two channels are assigned to deflector X and the second two channels
to deflector Y. In this case, both channels 1 and 3 have zero phase, channels 2 and 4 have a single frequency
dependent offset with respect to those channels.

Parameters

] in \ XYCompEnable \ Set to true to enable X/Y style phase beam steering (split channels)

Returns

true if the XY Phase Setting request was sent successfully.

Since

1.3

17.56.4.7 bool iMS::SignalPath::ReportEncoderVelocity (ENCODER_CHANNEL chan)

Retrieves the current angular velocity of the requested encoder channel.

Whilst enabled, the encoder inputs are continuously monitored for activity and any movement is converted by the
tracking loop filter into an estimate of velocity in number of encoder ticks per second. Note that for a quadrature
encoder, a single tick is defined as an edge of either type (rising or falling) on either signal input, to guarantee
maximum possible resolution, thus there are 4 ticks to a single pulse on one signal input.

This function allows application software to request the current velocity estimate of either encoder channel. The
result is reported to the software in the SignalPathEvents::ENC_VEL_CH_X and ENC_VEL_CH_Y events.

Parameters

in \ chan \ which of the two encoder channels to request the velocity from (X or Y).

Returns

true if the encoder velocity report request was sent successfully

Since

1.4

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

222 Class Documentation

17.56.4.8 bool iMS::SignalPath::SetCalibrationTone (const FAP & fap)

Bypasses Controller Data and Compensation Tables and plays a fixed tone for calibration purposes.

In order to calibrate the RF output signal path and the AO Device, it is sometimes useful to play a fixed calibration
tone. This can be achieved using this function, which disconnects the Controller from the signal path along with the
Compensation Tables and immediately plays a pure tone on all 4 RF Channels simultaneously at the Frequency,
Amplitude and Phase Offsets specified by the input argument. The fixed tone will remain on the output until cleared.

Bug In v1.0 SDK calibration tone amplitude would be 25% of value provided in fap. Corrected in 1.1.0.

Parameters

] in fap | a FAP triad specifying the output tone to be played back.

Returns

true if the calibration tone request was sent successfully

Since

1.0

17.56.4.9 bool iMS::SignalPath::SetChannelReversal (bool reversal)

Reverses the channel order of the 4 RF Outputs.

Sometimes, usually to simplify cable routing, it is desirable to order the 4 RF outputs in 4-3-2-1 configuration instead
of 1-2-3-4. This can be achieved by setting the channel reversal configuration bit, using this function.

Parameters
in reversal | Settrue to enable the channel reversal (Channel 1 outputs Channel 4 data and
vice versa)
Returns

true if the reversal update request was sent successfully

Since

1.0

17.56.4.10 void iMS::SignalPath::SignalPathEventSubscribe (const int message, IEventHandler x handler)

Subscribe a callback function handler to a given SignalPathEvents event.

SignalPath can callback user application code when an event occurs that affects the signal path. Supported events
are listed under SignalPathEvents. The callback function must inherit from the IEventHandler interface and override
its EventAction() method.

Use this member function call to subscribe a callback function to a SignalPathEvents event. For the period that a
callback is subscribed, each time an event in SignalPath occurs that would trigger the subscribed SignalPathEvents
event, the user function callback will be executed.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.56 iMS::SignalPath Class Reference 223

Parameters
in message | Use the SignalPathEvents::Event enum to specify an event to subscribe to
in handler | A function pointer to the user callback function to execute on the event trigger.
Since
1.0

17.56.4.11 void iMS::SignalPath::SignalPathEventUnsubscribe (const int message, const IEventHandler x handler)

Unsubscribe a callback function handler from a given SignalPathEvents event.

Removes all links to a user callback function from the Event Trigger map so that any events that occur in the
SignalPath object following the Unsubscribe request will no longer execute that function

Parameters
in message | Use the SignalPathEvents::Event enum to specify an event to unsubscribe
from
in handler | A function pointer to the user callback function that will no longer execute on
an event
Since
1.0

17.56.4.12 bool iMS::SignalPath::SwitchRFAmplitudeControlSource (const AmplitudeControl src)

Selects the amplitude control source for all 4 RF channels.

Selects the analogue control source to apply to the RF mixer in the output signal conditioning for all 4 RF Channels:
digital pot 1, digital pot 2, external analogue modulation or turned off

Parameters

in src | The Amplitude Control Source selection

Returns

true if the source select update request was sent successfully

Since

1.0

17.56.4.13 bool iMS::SignalPath::UpdateDDSPowerLevel (const Percent & power)

Scales the DDS device (Direct Digital Synthesis RF signal generator) power up & down.

The RF signal generator device on the Synthesiser converts frequency, amplitude and phase data into the 4 RF
signals that drive the output of the Synthesiser. The device can be configured to scale the analogue output power
up & down. This function performs the power scaling between 0% (minimum power) and 100% (maximum power)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

224 Class Documentation

Parameters
in power | the percentage of maximum power at which the DDS should drive RF signals
into the output signal conditioning
Returns

true if the power update request was sent successfully

Since

1.0

17.56.4.14 bool iMS::SignalPath::UpdateEncoder (const VelocityConfiguration & velcomp)

UpdateEncoder enables the Encoder velocity offset correction and updates the parameters.

Calling this function will enable the velocity correction capability of the Synthesiser or update the parameters of the
velocity correction according to the values in the VelocityConfiguration struct

Parameters

in velcomp | Contains the values with which to configure the Velocity Correction process

Returns

true if the Encoder Update request was sent successfully

Since

1.4

17.56.4.15 bool iMS::SignalPath::UpdateLocalToneBuffer (const ToneBufferControl & tbe, const unsigned int index,
const SignalPath::Compensation AmplitudeComp = SignalPath::Compensation::ACTIVE, const
SignalPath::Compensation PhaseComp = SignalPath::Compensation::ACTIVE)

Use these functions to output tones from the Local Tone Buffer, control their selection and compensation.

The Local Tone Buffer in the Synthesiser stores a set of 256 TBEntry's, each comprising of a FAP per each of the 4
output channels. The LTB can be inserted in the Synthesiser output signal path, replacing the Image data deriving
from a connected Controller. Multiple ToneBuffers can be stored in Synthesiser non-volatile memory and any one
of these can be recalled by host software and if one of them is marked with the filesystem 'default' flag, it will be
loaded into the LTB at startup causing the Signal Path to be routed to the LTB.

In order to determine which method is used to provide the tone index for the LTB (Host Software, External 16-entry
and External 256-entry), update the LTB buffer using one of the methods containing a ToneBufferControl parameter.

In order to change the currently selected LTB index (only in Host Software control mode), use one of the methods
containing the index parameter.

The LTB outputs may be injected into the Synthesiser signal path either before or after the CompensationTable
Look-Up Table. If before (true), amplitude compensation is applied to the signal amplitudes, if after (false), use the
methods containing the AmplitudeCompensation parameter.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.56 iMS::SignalPath Class Reference 225

Parameters
in tbc | Select LTB Control Source
in AmplitudeComp | indicates whether to apply LUT Compensation to Tone amplitude data
in PhaseComp | indicates whether to apply LUT Compensation to Tone phase data
in index | In Host Software control mode, select which LTB index to use
Returns

true if update was successful

Since

1.1

17.56.4.16 bool iMS::SignalPath::UpdateLocalToneBuffer (const ToneBufferControl & thc)
This is an overloaded member function, provided for convenience. It differs from the above function only in what

argument(s) it accepts.

17.56.4.17 bool iMS::SignalPath::UpdateLocalToneBuffer (const SignalPath::Compensation AmplitudeComp, const
SignalPath::Compensation PhaseComp)

This is an overloaded member function, provided for convenience. It differs from the above function only in what

argument(s) it accepts.

17.56.4.18 bool iMS::SignalPath::UpdateLocalToneBuffer (const unsigned int index)

This is an overloaded member function, provided for convenience. It differs from the above function only in what

argument(s) it accepts.

17.56.4.19 bool iMS::SignalPath::UpdatePhaseTuning (const RFChannel & channel, const Degrees & phase)

Applies a constant Phase offset to one of the 4 RF Channels.

The 4 RF Channels can be 'tuned' to offset phase discrepancies in, for example, cable length differences by setting
up a constant phase offset that will be added to the RF signal output of that channel

Parameters

in channel | The RF Channel to apply the offset to

in phase | The amount of constant phase offset to apply, in degrees
Returns

true if the phase offset update request was sent successfully

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

226

Class Documentation

17.56.4.20 bool iMS::SignalPath::UpdateRFAmplitude (const AmplitudeControl src, const Percent & ampl)

Scales the Digital Potentiometer mixer drive level up & down.

The 2 digital potentiometers on the Synthesiser can be selected to apply a DC drive level to the IF input of a
wideband RF mixer in the output channel signal conditioning, thereby acting as an amplitude control voltage.

This function sets the drive level of the 2 digital potentiometers. The AmplitudeControl input determines which
potentiometer is updated, if it is set to anything other than WIPER_1 or WIPER_2, the request is ignored and the

function returns false.

Parameters

in src | Which of the two digital potentiometers to update

in ampl | the percentage of maximum amplitude scaling to update the potentiometer to
Returns

true if the amplitude update request was sent successfully

Since

1.0

The documentation for this class was generated from the following file:

« SignalPath.h

17.57 iMS::SignalPathEvents Class Reference

All the different types of events that can be triggered by the SignalPath class.

#include <include\SignalPath.h>

Public Types

» enum Events { RX_DDS_POWER, ENC_VEL_CH_X, ENC_VEL_CH_Y, Count }
List of Events raised by the Signal Path module.

17.57.1 Detailed Description

All the different types of events that can be triggered by the SignalPath class.

Some events contain integer parameter data which can be processed by the IEventHandler::EventAction derived

method

Author

Dave Cowan

Date
2015-11-11

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.58 iMS::StartupConfiguration Struct Reference

227

17.57.2 Member Enumeration Documentation
17.57.2.1 enum iMS::SignalPathEvents::Events
List of Events raised by the Signal Path module.

Enumerator

RX_DDS_POWER Returns DDS Power setting.
ENC_VEL _CH_X Returns current Encoder X Channel Velocity.
ENC_VEL_CH_Y Returns current Encoder Y Channel Velocity.

The documentation for this class was generated from the following file:

« SignalPath.h

17.58 iMS::StartupConfiguration Struct Reference

The Synthesiser stores in its non-volatile memory a set of configuration values that are preloaded on startup.

#include <include\SystemFunc.h>

Collaboration diagram for iMS::StartupConfiguration:

| iMS::Frequency |

| iMS::Percent | | iMS::Degrees |
z T

) PhaseTuneCh1

\ I
DDSPower
\ b ; . ; PhaseTuneCh2
. ExtClockFrequency 'RFAmplitudeWiper1 ," PhaseTuneCh3

| . :
IRFAmplltudeW|per2 ," PhaseTuneChd

AN 7/
~ | s
~, -~

iMS::StartupConfiguration

Public Attributes

» Percent RFAmplitudeWiper1 { 0.0 }

Setting for RF Amplitude Control Wiper 1.
» Percent RFAmplitudeWiper2 { 0.0 }

Setting for RF Amplitude Control Wiper 2.
+ Percent DDSPower { 0.0 }

Setting for DDS Powere Level.

« SignalPath::AmplitudeControl AmplitudeControlSource { SignalPath::AmplitudeControl::WIPER_1 }

Select which of the four control sources should be applied to the RF signal amplitude modulation.

* bool RFGate { false }

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

228

Class Documentation

Switch the RF power amplifier gate signal on/off at startup.
bool RFBias12 { false }
Individually enable the bias power for channels 1 and 2 at startup.
bool RFBias34 { false }
Individually enable the bias power for channels 3 and 4 at startup.
bool ExtEquipmentEnable { false }
Select whether to enable the external equipment optoswitch at startup.
SignalPath::Compensation LTBUseAmplitudeCompensation { SignalPath::Compensation::ACTIVE }
Sets whether the LTB should use amplitude compensation from the look-up table.
SignalPath::Compensation LTBUsePhaseCompensation { SignalPath::Compensation::BYPASS }
Sets whether the LTB should use phase compensation from the look-up table.
SignalPath::ToneBufferControl LTBControlSource { SignalPath::ToneBufferControl::OFF }
Selects the control mode for the LTB: OFF (Image mode), host software control, external drive (16) or extended
external (256)
std::uint8_t LocalTonelndex { 0 }
In host mode, picks the initial setting for the Tone Buffer index.
Degrees PhaseTuneCh1 { 0.0}
Apply any phase tuning offset coefficient to the RF output on channel 1.
Degrees PhaseTuneCh2 { 0.0 }

Apply any phase tuning offset coefficient to the RF output on channel 2.
Degrees PhaseTuneCh3 { 0.0 }
Apply any phase tuning offset coefficient to the RF output on channel 3.
Degrees PhaseTuneCh4 { 0.0 }
Apply any phase tuning offset coefficient to the RF output on channel 4.
bool ChannelReversal { false }
If true, the 4 RF signals will output in reverse channel order.
SignalPath::Compensation ImageUseAmplitudeCompensation { SignalPath::Compensation::ACTIVE }
Sets whether Image pixel data should use amplitude compensation from the look-up table.
SignalPath::Compensation ImageUsePhaseCompensation { SignalPath::Compensation::BYPASS }
Sets whether Image pixel data should use phase compensation from the look-up table.
SystemFunc::UpdateClockSource upd_clk { SystemFunc::UpdateClockSource::INTERNAL }
Configures the DDS update clock source to either be generated internally or be derived from the external Image clock
input.
bool XYCompEnable { false }
Enables X/Y Deflector mode in which phase compensation is applied independently to each pair of channels.
Aucxiliary::LED_SOURCE LEDGreen { Auxiliary::LED_SOURCE::PULS }
Configures the Green LED function.
Auxiliary::LED_SOURCE LEDYellow { Auxiliary::LED_SOURCE::RF_GATE }
Configures the Yellow LED function.
Aucxiliary::LED_SOURCE LEDRed { Auxiliary::LED_SOURCE::INTERLOCK}
Configures the Red LED function.
std::uint8_t GPOutput { 0 }
The default value to drive on the General Purpose output.
SystemFunc::NHFLocalReset ResetOnUnhealthy { SystemFunc::NHFLocalReset::NO_ACTION }
Sets what action to perform if the communications channel enters an "unhealthy" state.
bool CommsHealthyCheckEnabled { false }
Turns on/off the communications channel health state check.
unsigned int CommsHealthyCheckTimerMilliseconds { 500 }
Timeout between communications messages after which deemed unhealthy.
SignalPath::SYNC_SRC SyncDigitalSource { SignalPath::SYNC_SRC:: IMAGE_DIG }

Sets the source of synchronous data applied to the digital outputs.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.59 iMS::SystemFunc Class Reference 229

« SignalPath::SYNC_SRC SyncAnalogASource { SignalPath::SYNC_SRC::IMAGE_ANLG_A}

Sets the source of synchronous data applied to the analog A output.
« SignalPath::SYNC_SRC SyncAnalogBSource { SignalPath::SYNC_SRC::IMAGE_ANLG_B}

Sets the source of synchronous data applied to the analog B output.
» SystemFunc::PLLLockReference PLLMode { SystemFunc::PLLLockReference::INTERNAL }

Sets the default system clock mode - internally generated or slave to an external reference clock input.
» kHz ExtClockFrequency { 1000.0 }

Defines the external supplied reference clock frequency when manual external reference PLL mode is used.

17.58.1 Detailed Description

The Synthesiser stores in its non-volatile memory a set of configuration values that are preloaded on startup.

Modify the values present in this struct and pass the struct by reference to the SystemFunc::StoreStartupConfig()
function to overwrite the existing startup configuration parameters

e.g.

SystemFunc sys (myiMSs) ;
StartupConfiguration cfg;
cfg.DDSPower = 100.0;
sys.StoreStartupConfig(cfqg);

Since

1.1

The documentation for this struct was generated from the following file:

» SystemFunc.h

17.59 iMS::SystemFunc Class Reference

Provides System Management functions not directly related to RF signal generation or signal path control.

#include <include\SystemFunc.h>

Public Types

» enum UpdateClockSource { UpdateClockSource::INTERNAL, UpdateClockSource::EXTERNAL }

Determines whether DDS Synthesiser IC should have its update signal driven by the Synthesiser internal circuitry or
from an external source (for synchronising the device to a system clock)
» enum TemperatureSensor { TemperatureSensor::TEMP_SENSOR_1, TemperatureSensor::TEMP_SENS«
OR_2}
There are two available temperature sensors in the Synthesiser System.

» enum PLLLockReference { PLLLockReference::INTERNAL, PLLLockReference::EXTERNAL_FIXED, PLL«
LockReference::EXTERNAL_AUTO, PLLLockReference::EXTERNAL_FAILOVER }

Synthesiser Master Clock Reference Mode.
» enum PLLLockStatus {
PLLLockStatus::EXTERNAL_NOSIGNAL = 0, PLLLockStatus::INTERNAL_UNLOCKED = 4, PLLLock«
Status::INTERNAL_LOCKED = 5, PLLLockStatus::EXTERNAL_VALID_UNLOCKED = 8,
PLLLockStatus::EXTERNAL_LOCKED =9 }

Synthesiser Master Clock Status Cast the status value reported to application code from a GetMasterClockStatus()
call to PLLLockStatus to determine the current status of the Synthesiser Master Clock.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

230 Class Documentation

Public Member Functions
Constructor & Destructor

» SystemFunc (const IMSSystem &ims)
Constructor for SystemFunc Object.
» ~SystemFunc ()

Destructor for SystemFunc Object.

RF Amplifier Master Switches

These software switches drive signal lines in the Synthesiser which connect through to the RF Amplifier and turn
on or off the high power RF Amplifier, and selectively enable pairs of RF Channels within it.

* bool EnableAmplifier (bool en)

Enables the RF Amplifier.
* bool EnableExternal (bool enable)

Enables the External Equipment Optoisolator.
» bool EnableRFChannels (bool chan1_2, bool chan3_4)

Selectively enables channels 1&2 and channels 3&4.

Pixel Interface Checksum Error Counter

The Fast Pixel Interface between the iMS Controller and iMS Synthesiser is protected by a simple checksum.
Any errors that accumulate on the interface are recorded in a counter which can be read and reset from software.
If the counter is non-zero, an LED can be configured to light on the Synthesiser - see function Auxiliary::Assign«
LED().

Parameters

] in \ Reset | clears the error count to zero, extinguishing the LED (default true)

Returns

true if the checksum error count request was sent successfully.

Since

1.1

* bool GetChecksumErrorCount (bool Reset=true)

DDSUpdateClockSource

* bool SetDDSUpdateClockSource (UpdateClockSource src=UpdateClockSource::INTERNAL)

Configures DDS Update signal source The Direct Digital Synthesiser engine built into the Synthesiser requires an
update signal to initiate the output of an RF signal that was previously programmed to the device from an Image«
Point, ToneBufferEntry or CalibrationTone. Normally this is handled internally by the Synthesiser electronics, in
which case this should be left to Internal. In certain advanced usage scenarios (typically where the Synthesiser
must be synchronised to a user supplied master clock), the update signal may be sourced externally in which case
it is derived from the External Image Clock input.

Startup Configuration Programming

* bool StoreStartupConfig (const StartupConfiguration &cfg)
Store Synthesiser Default Startup Configuration to Non-volatile Memory.

Temperature Sensing

» bool ReadSystemTemperature (SystemFunc::TemperatureSensor sensor)
Reads the current temperature of the iMS.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.59 iMS::SystemFunc Class Reference 231

Master Reference Clock

Some iMS Synthesisers feature a PLL (Phase Lock Loop) and high accuracy internal clock oscillator that can
either be set to lock the Synthesiser master clock to a precision internal reference (<2ppm) or slave to ane
externally supplied reference clock.

If set to slave to an external reference clock, there are three external modes:

1) External Manual: in which the frequency of the externally supplied clock source is programmed into the
Synthesiser by application software. 2) External Auto: in which the frequency of the externally supplied clock
source is measured by the Synthesiser and the PLL continually updated to lock to that frequency 3) External
Failover: a modification of the "Auto" mode in which if the PLL is ever seen to lose its locked state, having
previously been locked, it will switch over to the Internal precision crystal oscillator.

In all cases, the externally supplied clock may have any frequency that is a multiple of 10kHz with a minimum
supported clock rate of 50kHz and a maximum of 10MHz.

* bool SetClockReferenceMode (SystemFunc::PLLLockReference mode, kHz ExternalFixedFreq=k«
Hz(1000.0))

Sets the Master Reference Clock mode of the Synthesiser to either Internal or on of the External modes.
* bool GetClockReferenceStatus ()

Returns the current status of the master reference clock function.
* bool GetClockReferenceFrequency ()

Returns the measured frequency of the external reference clock port.
* bool GetClockReferenceMode ()

Returns the current mode of the reference clock function.

Event Notifications

+ void SystemFuncEventSubscribe (const int message, IEventHandler xhandler)
Subscribe a callback function handler to a given SystemFuncEvents event.

« void SystemFuncEventUnsubscribe (const int message, const IEventHandler «xhandler)
Unsubscribe a callback function handler from a given SystemFuncEvents event.

Communications "Not Healthy Flag"

Since

1.41

Communications with an iMS System can be monitored using a "Communications Not Healthy" mechanism. The
iMS Controller features a timer with a configurable timeout value which resets each time a message is received from
the host. If no message is received from the host within the timeout period, the host communications is considered
to be in an "unhealthy" state, meaning that messages were expected but haven't arrived. The iIMS System will set
the Communications Not Healthy flag in any subsequent message responses that do get sent to the host, in case
the problem was a temporary one, to indicate the problem to the host. The host can clear the not healthy flag and
take any further action, as necessary.

In addition, if configured to do so, the iIMS System can cause a local system-wide reset to attempt to re-initialise
the communications, once it registers a Not Healthy condition. This will flush any communications buffers and may
restart communications if the problem was a local one. This behaviour is turned off by default.

At the host end, two things must be done:

(1) Host software must be sure to send messages to the iMS System regularly, and well within the timeout limit set
by the NHF timer. The message can be any simple request for status information or anything else as required. All
messages will reset the timer.

(2) Host software must perform a similar type of check, looking for timed out responses to its requests to identify that
communications have failed. It should then take appropriate action, resetting its communications interfaces where
possible.

The mechanism is intended for high-reliability applications where uptime is important and service access is limited.
It can be disabled completely if required.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

232 Class Documentation

» enum NHFLocalReset { NHFLocalReset::NO_ACTION = 0, NHFLocalReset::RESET_ON_COMMS_UNH«
EALTHY =1}

The action to perform at the iIMS System when a Not Healthy condition is registered.
* bool ClearNHF ()

Clear the Not Healthy Flag once normal service is resumed.
* bool ConfigureNHF (bool Enabled, int milliSeconds, NHFLocalReset reset)

Configure the Not Healthy Flag mechanism.

17.59.1 Detailed Description
Provides System Management functions not directly related to RF signal generation or signal path control.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

17.59.2 Member Enumeration Documentation
17.59.2.1 enum iMS::SystemFunc::NHFLocalReset [strong]
The action to perform at the iMS System when a Not Healthy condition is registered.

Enumerator

NO_ACTION Do nothing other than set the NHF bit on future responses.
RESET_ON_COMMS_UNHEALTHY Perform a system wide reset.

17.59.2.2 enum iMS::SystemFunc::PLLLockReference [strong]
Synthesiser Master Clock Reference Mode.

Since

1.41

Enumerator

INTERNAL Master Clock uses internal precision frequency reference.

EXTERNAL_FIXED Master Clock attempts to phase lock to an externally supplied reference clock with man-
ually configured frequency.

EXTERNAL_AUTO Master Clock attempts to phase lock to an externally supplied reference clock whose
frequency is automatically determined.

EXTERNAL_FAILOVER Master Clock attempts to phase lock to an externally supplied reference clock whose
frequency is automatically determined. If the reference frequency measurement goes invalid for > 400ms,
switch over to the internal frequency source until the clock reference mode is reprogrammed.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.59 iMS::SystemFunc Class Reference 233

17.59.2.3 enum iMS::SystemFunc::PLLLockStatus [strong]

Synthesiser Master Clock Status Cast the status value reported to application code from a GetMasterClockStatus()
call to PLLLockStatus to determine the current status of the Synthesiser Master Clock.

Enumerator

EXTERNAL_NOSIGNAL No signal detected on external reference clock input. PLL Unlocked.

INTERNAL_UNLOCKED Master Clock using internal clock reference but PLL Not Locked (this should only
occur temporarily when switching from external to internal mode)

INTERNAL_LOCKED Master Clock using internal clock reference and PLL is Locked.

EXTERNAL_VALID_UNLOCKED Reference signal detected on external reference clock input but PLL is Not
Locked to it (usually due to a frequency mismatch or non-conformal external signal reference)

EXTERNAL_LOCKED Reference signal detected and PLL is Locked.

17.59.2.4 enum iMS::SystemFunc::TemperatureSensor [strong]
There are two available temperature sensors in the Synthesiser System.

Since

1.4

Enumerator

TEMP_SENSOR_1 Sensor 1 is adjacent to the RF stage.
TEMP_SENSOR_2 Sensor 2 is adjacent to the DC power supplies.

17.59.2.5 enum iMS::SystemFunc::UpdateClockSource [strong]

Determines whether DDS Synthesiser IC should have its update signal driven by the Synthesiser internal circuitry
or from an external source (for synchronising the device to a system clock)

Since

1.1

Enumerator

INTERNAL Drive Update Signal internally (default)
EXTERNAL Drive Update Signal from external update source.

17.59.3 Constructor & Destructor Documentation
17.59.3.1 iMS::SystemFunc::SystemFunc (const IMSSystem & ims)

Constructor for SystemFunc Object.

An IMSSystem object, representing the configuration of an iIMS target must be passed by const reference to the
SystemFunc constructor.

The IMSSystem object must exist before the SystemFunc object, and must remain valid (not destroyed) until the
SystemFunc object itself is destroyed.

Once constructed, the object can neither be copied or assigned to another instance.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

234 Class Documentation

Parameters

in ims | A const reference to the iMS System

Since

1.0

17.59.4 Member Function Documentation
17.59.4.1 bool iMS::SystemFunc::ConfigureNHF (bool Enabled, int milliSeconds, NHFLocalReset reset)

Configure the Not Healthy Flag mechanism.

Parameters
in Enabled | Turns the mechanism on or off (default: on)
in milliSeconds | The timeout interval for the NHF timer (default: 500msec)
in reset | The behaviour to perform when a the Communications is determined to be
"Not Healthy" (default: NO_ACTION)
Returns

true if the configuration request was sent successfully

Since

1.0

17.59.4.2 bool iMS::SystemFunc::EnableAmplifier (bool en)

Enables the RF Amplifier.

Parameters

in \ en | true turns on the RF Amplifier, false turns it off

Returns

true if the enable request was sent successfully

Since

1.0

17.59.4.3 bool iMS::SystemFunc::EnableExternal (bool enable)

Enables the External Equipment Optoisolator.

Parameters

] in enable \ true turns on the Optoisolator

Returns

true if the enable request was sent successfully

Since

1.1

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.59 iMS::SystemFunc Class Reference 235

17.59.4.4 bool iMS::SystemFunc::EnableRFChannels (bool chan1_2, bool chan3 4)

Selectively enables channels 1&2 and channels 3&4.

Parameters
in chan1_2 | true turns on channels 1 and 2, false turns them off
in chan3 4 | true turns on channels 3 and 4, false turns them off
Returns

true if the enable request was sent successfully

Since

1.0

17.59.4.5 bool iMS::SystemFunc::GetClockReferenceFrequency ()

Returns the measured frequency of the external reference clock port.

The external reference clock port is continually monitored, even if the master clock is set to Internal. This function
requests the current frequency of any signal connected to the reference clock port. Note that the reference clock
measurement function is limited to measure the input clock only as a multiple of 10kHz so this function will not
return a value with any finer resolution than that. The value is returned as a real value (double) event and the
user should subscribe to the SystemFuncEvents:MASTER_CLOCK_REF_FREQ event to retrieve the result. The
returned double represents the frequency of the external reference clock to the closest value of 10kHz.

Returns

true if the frequency reference request was sent successfully

17.59.4.6 bool iMS::SystemFunc::GetClockReferenceMode ()

Returns the current mode of the reference clock function.

This function requests from the Synthesiser the current mode in which the reference clock function is operating. The
mode is returned as an integer event and the user should subscribe to the SystemFuncEvents::MASTER_CLOC«
K_REF_MODE event to retrieve the result. The returned integer can be cast to a SystemFunc::PLLLockReference
enum to interpret the event integer

Returns

true if the mode request was sent successfully

17.59.4.7 bool iMS::SystemFunc::GetClockReferenceStatus ()

Returns the current status of the master reference clock function.

This command issues a status request from the Synthesiser's Master Reference Clock. The status is returned as an
integer event and the user should subscribe to the SystemFuncEvents::MASTER_CLOCK_REF_STATUS event to
retrieve the result. The returned integer can be cast to a SystemFunc::PLLLockStatus enum to interpret the status
integer

Returns

true if the status request was sent successfully

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

236 Class Documentation

17.59.4.8 bool iMS::SystemFunc::ReadSystemTemperature (SystemFunc::TemperatureSensor sensor)

Reads the current temperature of the iMS.

Some iMS Synthesisers include onboard temperature sensors to monitor the temperature inside the iMS case (note
this is different to the temperature readings available using the Diagnostics class that perform temperature readings
on the amplifier and AO Device). Call this function to initiate a temperature reading, specifying which sensor to read
from. The temperature value will be reported back to the application code using the SystemFuncEvents::SYNTH«
_TEMPERATURE_1 and SystemFuncEvents::SYNTH_TEMPERATURE_2 events.

Returns

true if the requst to read the iMS temperature was sent successfully

Since

1.4

17.59.4.9 bool iMS::SystemFunc::SetClockReferenceMode (SystemFunc::PLLLockReference mode, kHz
ExternalFixedFreq =kHz (1000.0))

Sets the Master Reference Clock mode of the Synthesiser to either Internal or on of the External modes.

Specify the desired reference clock mode. If using EXTERNAL_FIXED, also specify the external frequency

Parameters
in mode | The reference clock mode to set
in ExternalFixed«— | the frequency of the external reference clock, if using Fixed mode
Freq
Returns

true if the mode setting command was sent successfully

Since

1.41

17.59.4.10 bool iMS::SystemFunc::SetDDSUpdateClockSource (UpdateClockSource src =
UpdateClockSource::INTERNAL)

Configures DDS Update signal source The Direct Digital Synthesiser engine built into the Synthesiser requires an
update signal to initiate the output of an RF signal that was previously programmed to the device from an Image«
Point, ToneBufferEntry or CalibrationTone. Normally this is handled internally by the Synthesiser electronics, in
which case this should be left to Internal. In certain advanced usage scenarios (typically where the Synthesiser
must be synchronised to a user supplied master clock), the update signal may be sourced externally in which case
it is derived from the External Image Clock input.

Parameters
in src | INTERNAL for most scenarios, set to EXTERNAL for external update signal
applications
Returns

true if the request to change update signal source was sent successfully

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.59 iMS::SystemFunc Class Reference 237

Since

1.1

17.59.4.11 bool iMS::SystemFunc::StoreStartupConfig (const StartupConfiguration & cfg)

Store Synthesiser Default Startup Configuration to Non-volatile Memory.

After every power up and reset event, the Synthesiser will inspect the non-volatile memory to see if a startup con-
figuration is present. If it is, the configuration contents are parsed and assigned to their respective control registers.
Combining this process with Default Scripts stored in the Filesystem can result in a fully specified standalone op-
erational Synthesiser system with no software connection required. param[in] cfg A const reference to the required
configuration behaviour structure. Pre-define the behaviour by setting the config structure fields to requirements.

Returns

true if the request to program the startup configuration was sent successfully

Since

1.1

17.59.4.12 void iMS::SystemFunc::SystemFuncEventSubscribe (const int message, IEventHandler x handler)

Subscribe a callback function handler to a given SystemFuncEvents event.

SystemFunc can callback user application code when an event occurs that affects the signal path. Supported
events are listed under SystemFuncEvents. The callback function must inherit from the IEventHandler interface and
override its EventAction() method.

Use this member function call to subscribe a callback function to a SystemFuncEvents event. For the period that a
callback is subscribed, each time an event in SystemFunc occurs that would trigger the subscribed SystemFunc+«
Events event, the user function callback will be executed.

Parameters
in message | Use the SystemFuncEvents::Event enum to specify an event to subscribe to
in handler | A function pointer to the user callback function to execute on the event trigger.
Since
1.0

17.59.4.13 void iMS::SystemFunc::SystemFuncEventUnsubscribe (const int message, const IEventHandler x handler)

Unsubscribe a callback function handler from a given SystemFuncEvents event.

Removes all links to a user callback function from the Event Trigger map so that any events that occur in the
SystemFunc object following the Unsubscribe request will no longer execute that function

Parameters
in message | Use the SystemFuncEvents::Event enum to specify an event to unsubscribe
from
in handler | A function pointer to the user callback function that will no longer execute on
an event

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

238 Class Documentation

Since

1.0

The documentation for this class was generated from the following file:

» SystemFunc.h

17.60 iMS::SystemFuncEvents Class Reference

All the different types of events that can be triggered by the SystemFunc class.

#include <include\SystemFunc.h>

Public Types
« enum Events {
PIXEL_CHECKSUM_ERROR_COUNT, MASTER_CLOCK_REF_FREQ, MASTER_CLOCK_REF_MOD«

E, MASTER_CLOCK_REF_STATUS,
SYNTH_TEMPERATURE_1, SYNTH_TEMPERATURE_2, Count }

List of Events raised by the Signal Path module.
17.60.1 Detailed Description

All the different types of events that can be triggered by the SystemFunc class.

Some events contain integer parameter data which can be processed by the IEventHandler::EventAction derived
method

Author

Dave Cowan

Date
2015-11-11

Since

1.0

17.60.2 Member Enumeration Documentation
17.60.2.1 enum iMS::SystemFuncEvents::Events
List of Events raised by the Signal Path module.

Enumerator

PIXEL _CHECKSUM_ERROR_COUNT The number of Errors accumulated on the Pixel Interface.

The documentation for this class was generated from the following file:

» SystemFunc.h

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.61 iMS::ToneBuffer Class Reference 239

17.61 iMS::ToneBuffer Class Reference

An array of 4-channel FAP Tones stored in memory on the Synthesiser.

#include <include/ToneBuffer.h>

Public Types

Tone Buffer Array

TBArray is the internal type definition used for storing a buffer of TBEntry ‘s in the Image

» using TBArray = std::array< TBEntry, 256 >

Iterator Specification

Use these iterators when you want to work with ranges of Tone Buffer entries stored within a tone buffer. Iterators
can be used to access elements at an arbitrary offset position relative to the element they point to

Two types of iterators are supported; both are random access iterators. Dereferencing const _iterator yields a
reference to a constant element in the ToneBuffer (const TBEntry&).

« typedef TBArray::iterator iterator

Iterator defined for user manipulation of internal TBArray.
« typedef TBArray::const_iterator const_iterator

Const Iterator defined for user readback of internal TBArray.

Public Member Functions

Constructors & Destructors

ToneBuffer (const std::string &name="")
Empty Constructor.

ToneBuffer (const TBEntry &tbe, const std::string &name="")
Fill Constructor.

ToneBuffer (const int entry, const std::string &name="")
Non-volatile Memory Constructor.

ToneBuffer (const ToneBuffer &)

Copy Constructor.
ToneBuffer & operator= (const ToneBuffer &)

Assignment Constructor.
~ToneBuffer ()
Destructor.

ToneBuffer Boundary lterators

iterator begin ()
Returns an iterator pointing to the first element in the TBArray container.
iterator end ()

Returns an iterator referring to the past-the-end element in the TBArray container.
const_iterator begin () const

Returns a const _iterator pointing to the first element in the TBArray container.
const_iterator end () const

Returns a const _iterator referring to the past-the-end element in the TBArray container.
const_iterator cbegin () const

Returns a const _iterator pointing to the first element in the TBArray container.
const_iterator cend () const

Returns a const _iterator referring to the past-the-end element in the TBArray container.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

240 Class Documentation

TBArray Operators

» const TBEntry & operator[] (std::size_t idx) const

Random Access to a TBEntry in the TBArray.
» TBEntry & operator[] (std::size_t idx)

Random Write Access to a TBEnitry in the TBArray.
* bool operator== (ToneBuffer const &rhs) const

Equality Operator checks ToneBuffer contents for equivalence.

ToneBuffer Size

+ const std::size_t Size () const
Returns the number of elements in the ToneBuffer (non-modifiable)

Tone Buffer Description

* const std::string & Name () const

A string stored with the Tone Buffer to aid human users in identifying the purpose of the buffer.
* std::string & Name ()

17.61.1 Detailed Description
An array of 4-channel FAP Tones stored in memory on the Synthesiser.
Author

Dave Cowan

Date
2016-02-24

Since

1.1

17.61.2 Constructor & Destructor Documentation
17.61.2.1 iMS::ToneBuffer::ToneBuffer (const std::string & name="")

Empty Constructor.

Parameters

] in name \ The optional descriptive name to apply to the Tone Buffer

17.61.2.2 iMS::ToneBuffer::ToneBuffer (const TBEntry & the, const std::string & name=""")

Fill Constructor.

Use this constructor to generate a Tone Buffer with each entry initialised to the value of tbe

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.61 iMS::ToneBuffer Class Reference 241

Parameters
in tbe | The TBEntry that will fill each of the elements of the TBArray
in name | The optional descriptive name to apply to the Tone Buffer
Since
1.1
17.61.2.3 iMS::ToneBuffer::ToneBuffer (const int enfry, const std::string & name=""")

Non-volatile Memory Constructor.

Use this constructor to preload the ToneBuffer with data recalled from an entry in the Synthesiser FileSystem.

Parameters
in entry | the entry in the FileSystem Table from which to recall a ToneBuffer
in name | The optional descriptive name to apply to the Tone Buffer

Since
1.1

17.61.3 Member Function Documentation
17.61.3.1 iterator iMS::ToneBuffer::begin ()
Returns an iterator pointing to the first element in the TBArray container.

Returns

An iterator to the beginning of the TBArray container.

Since

1.1

17.61.3.2 const_iterator iMS::ToneBuffer::begin () const
Returns a const_iterator pointing to the first element in the TBArray container.

Returns

A const_iterator to the beginning of the TBArray container.

Since

1.25

17.61.3.3 const_iterator iMS::ToneBuffer::chegin () const

Returns a const_iterator pointing to the first element in the TBArray container.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

242 Class Documentation

Returns

A const_iterator to the beginning of the TBArray container.

Since

1.1

17.61.3.4 const_iterator iMS::ToneBuffer::cend () const

Returns a const_iterator referring to the past-the-end element in the TBArray container.

Returns

A const_iterator to the element past the end of the buffer.

Since

1.1

17.61.3.5 iterator iMS::ToneBuffer::end ()

Returns an iterator referring to the past-the-end element in the TBArray container.

The past-the-end element is the theoretical element that would follow the last element in the TBArray container. It
does not point to any element, and thus shall not be dereferenced.

Because the ranges used by functions of the standard library do not include the element pointed by their closing
iterator, this function can be used in combination with TBArray::begin to specify a range including all the elements
in the container.

Returns

An iterator to the element past the end of the TBArray.

Since

1.1

17.61.3.6 const_iterator iMS::ToneBuffer::end () const

Returns a const_iterator referring to the past-the-end element in the TBArray container.

Returns

A const_iterator to the element past the end of the buffer.

Since

1.25

17.61.3.7 const std::string& iMS::ToneBuffer::Name () const

A string stored with the Tone Buffer to aid human users in identifying the purpose of the buffer.

A descriptive string can be set alongside the Tone Buffer to allow users to identify and differentiate between Tone
Buffers without having to browse through the data. The description is optional, and if, not used, the description will
simply default to null.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.61 iMS::ToneBuffer Class Reference 243

17.61.3.8 bool iMS::ToneBuffer::operator== (ToneBuffer const & rhs) const

Equality Operator checks ToneBuffer contents for equivalence.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

244 Class Documentation

Parameters

in rhs | A ToneBuffer object to perform the comparison with

Returns

True if the supplied ToneBuffer is identical to this one.

Since

1.1

17.61.3.9 const TBEntry& iMS::ToneBuffer::operator[] (std::size_t idx) const

Random Access to a TBEntry in the TBArray.

The array subscript operator is defined to permit applications to access a TBEntry at any arbitrary position for
readback.

Parameters
in idx | Integer offset into the TBArray with respect to the first element in the array
(ToneBuffer::cbegin())
Returns

A const reference to a TBEntry.

Since

1.1

17.61.3.10 TBEntry& iMS::ToneBuffer::operator|] (std::size_t idx)

Random Write Access to a TBEntry in the TBArray.

The array subscript operator is defined to permit applications to access a CompensationPoint at any arbitrary posi-
tion for modification.

Parameters
in idx | Integer offset into the TBArray with respect to the first element in the array
(ToneBuffer::begin())
Returns

A reference to a TBEntry.

Since

1.1

17.61.3.11 const std::size_t iMS::ToneBuffer::Size () const

Returns the number of elements in the ToneBuffer (non-modifiable)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.62 iMS::ToneBufferDownload Class Reference 245

Returns

The number of elements in the ToneBuffer

Since

1.1

The documentation for this class was generated from the following file:

« ToneBuffer.h

17.62 iMS::ToneBufferDownload Class Reference

Provides a mechanism for downloading ToneBuffer's to a Synthesiser's LTB memory.
#include <include\ToneBuffer.h>

Inheritance diagram for iMS::ToneBufferDownload:

iMS::IBulkTransfer

iMS:: ToneBufferDownload

Collaboration diagram for iMS::ToneBufferDownload:

iMS::IBulk Transfer

iMS:: ToneBufferDownload

Public Member Functions
Constructor & Destructor

+ ToneBufferDownload (IMSSystem &ims, const ToneBuffer &tb)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

246 Class Documentation

Constructor for ToneBufferDownload Object.
» ~ToneBufferDownload ()

Destructor for ToneBufferDownload Object.

Bulk Transfer Initiation

* bool StartDownload ()

Begins download of entire ToneBuffer to LTB memory on Synthesiser.
* bool StartDownload (ToneBuffer::const_iterator first, ToneBuffer::const_iterator last)

Begins download of partial ToneBuffer to LTB memory on Synthesiser beginning at £irst TBEntry and continuing

until 1ast TBEntry (including first but not including last)
* bool StartDownload (ToneBuffer::const_iterator single)

Downloads a single TBEntry to LTB memory on Synthesiser.
* bool StartVerify ()

No Verify is possible. Always returns false.
* int GetVerifyError ()

No Verify is possible. Always return -1.

Event Notifications

+ void ToneBufferDownloadEventSubscribe (const int message, IEventHandler xhandler)

Subscribe a callback function handler to a given ToneBufferEvents entry.
+ void ToneBufferDownloadEventUnsubscribe (const int message, const IEventHandler xhandler)

Unsubscribe a callback function handler from a given ToneBufferEvents entry.
Store in Synthesiser Non-Volatile Memory

+ const FileSystemIndex Store (const std::string &FileName, FileDefault def=FileDefault::NON_DEFAULT)
const
Store ToneBuffer contents to non-volatile memory on the synthesiser.

17.62.1 Detailed Description

Provides a mechanism for downloading ToneBuffer's to a Synthesiser's LTB memory.

Author

Dave Cowan

Date
2016-02-24

Since

1.1

17.62.2 Constructor & Destructor Documentation
17.62.2.1 iMS::ToneBufferDownload::ToneBufferDownload (IMSSystem & ims, const ToneBuffer & tb)

Constructor for ToneBufferDownload Object.

The pre-requisites for an ToneBufferDownload object to be created are: (1) - an IMSSystem object, representing
the configuration of an iMS target to which the ToneBuffer is to be downloaded. (2) - a complete ToneBuffer object
to download to the iMS target.

ToneBufferDownload stores const references to both. This means that both must exist before the ToneBuffer«—
Download object, and both must remain valid (not destroyed) until the ToneBufferDownload object itself is destroyed.
Because they are stored as references, the IMSSystem and ToneBuffer objects themselves may be modified after
the construction of the ToneBufferDownload object.

Once constructed, the object can neither be copied or assigned to another instance.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.62 iMS::ToneBufferDownload Class Reference 247

Parameters
in ims | A const reference to the iIMS System which is the target for downloading the
Image
in tb | A const reference to the ToneBuffer which shall be downloaded to the target
Since
1.1

17.62.3 Member Function Documentation
17.62.3.1 int iMS::ToneBufferDownload::GetVerifyError() [inline], [virtual]

No Verify is possible. Always return -1.

Since

1.1

Implements iMS::|BulkTransfer.

17.62.3.2 bool iMS::ToneBufferDownload::StartDownload () [virtuall]

Begins download of entire ToneBuffer to LTB memory on Synthesiser.
Since

1.1

Implements iMS::IBulkTransfer.

17.62.3.3 bool iMS::ToneBufferDownload::StartDownload (ToneBuffer::const_iterator first,
ToneBuffer::const_iterator last)

Begins download of partial ToneBuffer to LTB memory on Synthesiser beginning at £i rst TBEntry and continuing
until 1ast TBEntry (including first but not including last)

Since

1.1

17.62.3.4 bool iMS::ToneBufferDownload::StartDownload (ToneBuffer::const_iterator single)

Downloads a single TBEntry to LTB memory on Synthesiser.

Since

1.1

17.62.3.5 bool iMS::ToneBufferDownload::StartVerify() [inline], [virtual]

No Verify is possible. Always returns false.

Since

1.1

Implements iMS::IBulkTransfer.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

248 Class Documentation

17.62.3.6 const FileSystemIndex iMS::ToneBufferDownload::Store (const std::string & FileName, FileDefault def =
FileDefault::NON_DEFAULT) const

Store ToneBuffer contents to non-volatile memory on the synthesiser.

The contents of this ToneBuffer can be stored to an area of non-volatile memory on the Synthesiser for retrieval at
a future time, including after subsequent power cycles. The data stored can be used to select between alternative
ToneBuffers without needing to recalculate or download from Software.

The table can be flagged to be used as a default at startup in which case the Synthesiser will use the contents as a
default ToneBuffer program allowing the Synthesiser to be used with no connection to a host system.

Parameters
in def | mark the entry as a default and the Synthesiser will attempt to program the
data to the Local Tone Buffer on power up.
in FileName | a string to tag the download with in the File System Table (limited to 8 chars)
Returns

the index in the File System Table where the data was stored or -1 if the operation failed

Since

1.1

17.62.3.7 void iMS::ToneBufferDownload::ToneBufferDownloadEventSubscribe (const int message, IEventHandler x
handler)

Subscribe a callback function handler to a given ToneBufferEvents entry.

ToneBufferDownload can callback user application code when an event occurs in the download process. Supported
events are listed under ToneBufferEvents. The callback function must inherit from the IEventHandler interface and
override its EventAction() method.

Use this member function call to subscribe a callback function to an ToneBufferEvents entry. For the period that a
callback is subscribed, each time an event in ToneBufferDownload occurs that would trigger the subscribed Tone«
BufferEvents entry, the user function callback will be executed.

Parameters
in message | Use the ToneBufferEvents::Event enum to specify an event to subscribe to
in handler | A function pointer to the user callback function to execute on the event trigger.
Since
1.1

17.62.3.8 void iMS::ToneBufferDownload::ToneBufferDownloadEventUnsubscribe (const int message, const IEventHandler
+ handler)
Unsubscribe a callback function handler from a given ToneBufferEvents entry.

Removes all links to a user callback function from the Event Trigger map so that any events that occur in the
ToneBufferDownload object following the Unsubscribe request will no longer execute that function

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.63 iMS::ToneBufferEvents Class Reference 249

Parameters
in message | Use the ToneBufferEvents::Event enum to specify an event to unsubscribe
from
in handler | A function pointer to the user callback function that will no longer execute on
an event
Since

1.1

The documentation for this class was generated from the following file:

« ToneBuffer.h

17.63 iMS::ToneBufferEvents Class Reference

All the different types of events that can be triggered by the ToneBuffer and ToneBufferDownload classes.

#include <include\ToneBuffer.h>

Public Types

« enum Events { DOWNLOAD_FINISHED, DOWNLOAD_ERROR, Count }

List of Events raised by the ToneBuffer Class and ToneBuffer Table Downloader.

17.63.1 Detailed Description

All the different types of events that can be triggered by the ToneBuffer and ToneBufferDownload classes.

Some events contain integer parameter data which can be processed by the IEventHandler::EventAction derived
method

Author

Dave Cowan

Date
2016-02-24

Since

1.1

17.63.2 Member Enumeration Documentation
17.63.2.1 enum iMS::ToneBufferEvents::Events
List of Events raised by the ToneBuffer Class and ToneBuffer Table Downloader.

Enumerator

DOWNLOAD FINISHED Event raised when ToneBufferDownload has confirmed that the iMS Controller re-
ceived all of the ToneBuffer data.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

250 Class Documentation

DOWNLOAD_ERROR Event raised each time the ToneBufferDownload class registers an error in the down-
load process.

The documentation for this class was generated from the following file:

« ToneBuffer.h

17.64 iMS::ToneBufferList Class Reference

A List of ToneBuffer's used as a container by ImageProject.
#include <include/Image.h>

Inheritance diagram for iMS::ToneBufferList:

iMS::ListBase< ToneBuffer >

iMS:: ToneBufferList

Collaboration diagram for iMS::ToneBufferList:

iMS::ListBase< ToneBuffer >

iMS::ToneBufferList

Additional Inherited Members

17.64.1 Detailed Description

A List of ToneBuffer's used as a container by ImageProject.

Date
2016-11-09

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.65 iMS::UserFileReader Class Reference

251

Since

1.3
The documentation for this class was generated from the following file:

» ImageProject.h

17.65 iMS::UserFileReader Class Reference

Provides a mechanism for retrieving User File data from the Synthesiser FileSystem.

#include <include\FileSystem.h>

Public Member Functions

Constructor & Destructor

+ UserFileReader (const IMSSystem &ims, const FileSystemIndex index)

Constructor for UserFileReader Object.
+ UserFileReader (const IMSSystem &ims, const std::string &FileName)

Constructor for UserFileReader Object (referenced by File Name)
+ ~UserFileReader ()

UserFileReader destructor.

Readback Core Function

» bool Readback (std::vector< std::uint8_t > &data)
Retrieves User File data into a byte array.

17.65.1 Detailed Description

Provides a mechanism for retrieving User File data from the Synthesiser FileSystem.

Author

Dave Cowan

Date
2016-01-21

Since

1.1

17.65.2 Constructor & Destructor Documentation

17.65.2.1 iMS::UserFileReader::UserFileReader (const IMSSystem & ims, const FileSystemIndex index)

Constructor for UserFileReader Object.

The UserFileReader object requires an IMSSystem object, which will have had its FileSystemTable read back during
initialisation. It must therefore exist before the UserFileReader object, and must remain valid (not destroyed) until
the UserFileReader object itself is destroyed. The UserFileReader object is tied to a single FileSystemTableEntry
and can only be used for reading back that object. If multiple files need to be read back, new UFRs should be

created for each one.

Once constructed, the object can neither be copied or assigned to another instance.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

252 Class Documentation

Parameters
in ims | A const reference to the iMS System whose FileSystemTable should be used
for reading back data
in index | the Entry in the FileSystemTable containing USER_DATA file data to readback
Since
1.1

17.65.2.2 iMS::UserFileReader::UserFileReader (const IMSSystem & ims, const std::string & FileName)

Constructor for UserFileReader Object (referenced by File Name)

Parameters
in ims | A const reference to the iMS System whose FileSystemTable should be used
for reading back data
in FileName | a string representing the name of the entry containing USER_DATA file data
to readback
Since
1.1

17.65.3 Member Function Documentation
17.65.3.1 bool iMS::UserFileReader::Readback (std::vector< std::uint8_t > & data)

Retrieves User File data into a byte array.

Call this function to initiate readback of data from the Synthesiser FileSystem into a byte array allocated by the
application

Parameters
out data | A reference to a vector to store the unformatted byte data representing the
user file. Any existing contents are overwritten.
Returns

true if the operation was successful

Since

1.1

The documentation for this class was generated from the following file:

+ FileSystem.h

17.66 iMS::UserFileWriter Class Reference

Provides a mechanism for committing User File data to the Synthesiser FileSystem.

#include <include\FileSystem.h>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.66 iMS::UserFileWriter Class Reference 253

Public Member Functions

Constructor & Destructor

» UserFileWriter (IMSSystem &ims, const std::vector< std::uint8_t > &file_data, const std::string file_name)

Constructor for UserFileWriter Object.
» ~UserFileWriter ()

Destructor for UserFileWriter.

File Write Core Function

+ FileSystemIndex Program ()

Stores User File data into a FileSystem and allocates a new FileSystemTableEntry.

17.66.1 Detailed Description

Provides a mechanism for committing User File data to the Synthesiser FileSystem.

Author

Dave Cowan

Date
2016-01-21

Since

1.1

17.66.2 Constructor & Destructor Documentation

17.66.2.1 iMS::UserFileWriter::UserFileWriter (IMSSystem & ims, const std::vector< std::uint8_t > & file_data, const
std::string file_name)

Constructor for UserFileWriter Object.

The UserFileWriter object requires an IMSSystem object, which will have had its FileSystemTable read back during
initialisation. It must therefore exist before the UserFileWriter object, and must remain valid (not destroyed) until the
UserFileWriter object itself is destroyed.

A reference to the User File data wrapped in an unformatted byte array needs to be provided, along with a string
representing the file name to allocate to the file in the FileSystemTable.

The File Name may be any sequence of valid ASCII characters, including all special characters ($, %, /, \ etc) but
not control characters. It is limited to 8 characters and will be truncated as such. Though not recommended, it is
permissible to allocate the same filename to multiple files contained in the FileSystemTable

Once constructed, the object can neither be copied or assigned to another instance.

Parameters
in ims | A const reference to the iIMS System whose FileSystemTable should be used
for writing new data
in file_data | an unformatted byte array containing the User File contents to program
in file_name | a string representing the name of the file to be allocated in the FileSystemTable
Since
1.1

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

254 Class Documentation

17.66.3 Member Function Documentation
17.66.3.1 FileSystemindex iMS::UserFileWriter::Program ()

Stores User File data into a FileSystem and allocates a new FileSystemTableEntry.
Call this function to initiate writing of the provided User File data into the FileSystem.

The function will first attempt to find sufficient free space and allocate it for the new data. If it cannot do that, it
will return an invalid FileSystemindex (-1). If free space was found, it will start writing the user file data starting at
the address that was found by the allocation algorithm (the user application cannot predict where in the Filesystem
address space the User data will be stored but this is unlikely to be a problem). A new FileSystemTableEntry is
created and added to the FileSystemTable containing the allocated address, the overall file length (including an
additional 2-byte marker at the start required by the FileSystem protocol), the type as USER_DATA, a NON_DE«-
FAULT marker, and the next available index.

Returns

the index in the FileSystemTable that was created by the Programming process, or -1 if it failed.

Since

1.1

The documentation for this class was generated from the following file:

+ FileSystem.h

17.67 iMS::VelocityConfiguration Struct Reference

Sets the parameters required to control the operation of the Encoder Input / Velocity Compensation function.
#include <SignalPath.h>

Collaboration diagram for iMS::VelocityConfiguration:

std::array< std::int16
t, 2>

A

| VelocityGain
I

iMS::VelocityConfiguration

Public Member Functions

+ void SetVelGain (const IMSSystem &ims, SignalPath::ENCODER_CHANNEL chan, kHz EncoderFreq, MHz
DesiredFreqDeviation, bool Reverse=false)

Sets the amount of frequency deviation gain applied to velocity measurement.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

17.67 iMS::VelocityConfiguration Struct Reference 255

Public Attributes

+ SignalPath::ENCODER_MODE EncoderMode { SignalPath::ENCODER_MODE::QUADRATURE }

Sets the type of encoder signal connected to the Synthesiser inputs.
« SignalPath::VELOCITY_MODE VelocityMode { SignalPath::VELOCITY_MODE::FAST }

Sets the velocity calculation method used in the tracking filter for frequency compensation.
« std::uint16_t TrackingLoopProportionCoeff { 4000 }

The Proportion Coefficient (0 - 65535) used in the Tracking Loop Filter.
« std::uint16_t TrackingLooplntegrationCoeff { 10000 }

The Integration Coefficient (0 - 65535) used in the Tracking Loop Filter.
« std::array< std::int16_t, 2 > VelocityGain

Controls the extent to which a given value of velocity causes a deviation in synthesiser frequency. Do not set manually,
use SetVelGain.

17.67.1 Detailed Description

Sets the parameters required to control the operation of the Encoder Input / Velocity Compensation function.

Holds parameters for the Encoder type (Quadrature or Clk/Dir), Velocity Estimation method, tracking loop filter
parameters and overall output gain - being the amount of deviation applied to the RF frequency generation for
a given encoder velocity. Also contains a method for calculating the value of the gain parameter for a desired
frequency deviation at a given encoder velocity.

Since

1.4

17.67.2 Member Function Documentation

17.67.2.1 void iMS::VelocityConfiguration::SetVelGain (const IMSSystem & ims, SighalPath::ENCODER_CHANNEL
chan, kHz EncoderFreq, MHz DesiredFreqDeviation, bool Reverse = false)

Sets the amount of frequency deviation gain applied to velocity measurement.

Use this function to set the encoder channel gain according to the amount of desired frequency offset (deviation) at
a chosen spot encoder angular frequency.

Parameters
in ims | a const reference to the IMSSystem in use
in chan | Which channel (X or Y) to set the encoder gain for
in EncoderFreq | The encoder tick frequency for which we shall define the gain
in DesiredFreq+— | The amount of change to the RF Frequency that shall be offset when the en-
Deviation | coder is operating at the specified velocity
in Reverse | Causes the RF frequency deviation to effect in the opposite direction

The documentation for this struct was generated from the following file:

« SignalPath.h

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

256 Class Documentation

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Chapter 18

File Documentation

18.1 Auxiliary.h File Reference

Classes for performing various auxiliary actions not directly related to driving Acousto-Optic devices.

#include "IEventHandler.h"
#include "IMSSystem.h"
#include "FileSystem.h"
#include <memory>

#include <map>

#include <initializer_list>
#include <deque>

Include dependency graph for Auxiliary.h:

initializer_list deque

FileSystem.h

IMSSystem.h

string

IMSTypeDefs.h

IEventHandler.h

cmath stdexcept vector cstdint

258 File Documentation

This graph shows which files directly or indirectly include this file:

Auxiliary.h

SystemFunc.h

Classes

* class iMS::AuxiliaryEvents

All the different types of events that can be triggered by the Auxiliary class.
« class iMS::Auxiliary

Provides auxiliary additional functions not directly related to Synthesiser operation.
+ class iMS::DDSScriptRegister

Create a register write to send to the DDS IC.
* class iMS::DDSScriptDownload

Provides a mechanism for transferring DDS Scripts into Filesystem memory.

Namespaces

+ iIMS

The entire APl is encapsulated by the iMS namespace.

Typedefs

+ using iMS::DDSScript = std::vector< DDSScriptRegister >

DDSScript stores the sequence of register writes to be loaded onto the Synthesiser. Can be manipulated using
the normal container operations provided by std::vector

18.1.1 Detailed Description

Classes for performing various auxiliary actions not directly related to driving Acousto-Optic devices.

There are a number of additional functions provided by the Synthesiser which may be used to facilitate integration
of the iIMS device into the overall system. These features are not fundamental to the operation of the iMS device
which is why they are held in a separate 'Auxiliary’ file.

Features include:
+ assignment of LEDs to indicate specific events
» Reading one of the two external analog inputs

» Writing to the external analog output

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.2 Compensation.h File Reference

259

+ Controlling the 4-bit Profile select signal driving the DDS Synthesiser IC (software control or externally pro-

vided)

» Advanced manual control of register contents written to the DDS Synthesiser IC.

Author

Dave Cowan

Date
2016-02-18

Since

1.1

18.2 Compensation.h File Reference

Classes for creating and downloading data that is used in the Compensation tables of the Synthesiser.

#include "Containers.h"
finclude "IMSSystem.h"

#include "IEventHandler.h"
#include "IMSTypeDefs.h"
#include "IBulkTransfer.h"
#include "FileSystem.h"
#include <memory>

#include <deque>

Include dependency graph for Compensation.h:

Compensation.h

e

| IBulkTransfer.h | | FileSystem.h |

deque list array IMSSystem.h

ctime string | IMSTypeDefs.h | | IEventHandler.h |

e

cmath cstdint

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

260 File Documentation

This graph shows which files directly or indirectly include this file:

Compensation.h

ImageProject.h

Classes

+ class iMS::CompensationEvents

All the different types of events that can be triggered by the Compensation and CompensationTableDownload classes.
* class iMS::CompensationPoint

Stores 4 data fields containing amplitude, phase, sync analogue and sync digital compensation data.
+ class iMS::CompensationPointSpecification

Completely specifies the desired compensation at a spot frequency.
+ class iMS::CompensationFunction

Class for performing Compensation related functions with the Synthesiser.
+ class iMS::CompensationTable

A table of CompensationPoints storing look-up data that can be transferred to memory in the Synthesiser.
+ class iMS::CompensationTableDownload

Provides a mechanism for downloading and verifying Compensation Tables to a Synthesiser's Look-Up memory.

Namespaces

« iIMS

The entire APl is encapsulated by the iMS namespace.

18.2.1 Detailed Description

Classes for creating and downloading data that is used in the Compensation tables of the Synthesiser.

The Compensation Tables are a part of the signal chain in the Synthesiser. There are 4 of them, each serving a
different purpose. All 4 are indexed by the signal frequency, spanning the lowest to the highest frequency supported
by the Synthesiser, each table consisting of a sequence of look-up entries (typically 2,048) spaced equidistantly in
frequency.

The 4 tables are:

(1) Amplitude: used to compensate for frequency-dependent inefficiency in the AO device, as well as in the RF Am-
plifier and the Synthesiser. The signal amplitude passing through the Synthesiser is multiplied by the compensation
output to result in a combined amplitude being passed to the Synthesiser DDS device.

(2) Phase: used in beam-steered AO applications where multiple acoustic columns present in the crystal are offset
in phase from each other in a way that is linearly dependent on the frequency offset from a central Bragg Angle
adjusted frequency.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.3 ConnectionList.h File Reference 261

(3) Analogue Sync: The output of this table can be routed to the Synchronous DAC output which gives a handy
analogue reference signal for either test purposes or for driving external custom circuitry. The advantage of driving
this from the look-up table is that custom mappings can be generated which allows great flexibility in configuring the
analogue signal in relation to the signal frequency that drives it.

(4) Digital Sync: As with the analogue sync, the output of this table is routed to external synchronous outputs which
can be used for test purposes or for driving external custom circuitry. The digital output bits could, for example, be
used to tune signal conditioning circuitry as the RF signal passes through certain frequency bands.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

18.3 ConnectionList.h File Reference

Creates iMS Connection Interfaces for Application Use and scans them to discover all available iMS Systems.

#include "IMSSystem.h"

#include <map>

#include <list>

Include dependency graph for ConnectionList.h:

| ConnectionList.h |

IMSSystem.h map list
IMSTypeDefs.h ctime string

cmath stdexcept cstdint vector

Classes

« class iMS::ConnectionList

Creates iMS Connection Interfaces and scans them to discover available iMS Systems.
+ struct iIMS::ConnectionList::ConnectionConfig

Controls the behaviour of a Connection Module during its discovery process.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

262 File Documentation

Namespaces

+ iIMS

The entire APl is encapsulated by the iMS namespace.

18.3.1 Detailed Description

Creates iMS Connection Interfaces for Application Use and scans them to discover all available iMS Systems.

ConnectionList.h is the starting point for all software interaction with an iIMS System. It maintains a list of all the
available host to iMS connection types (USB, Ethernet, RS422, etc) allows the application software to search all
of them for iIMS Systems with one function call, populates the IMSSystem object with details about the attached
system and provides it with the internal library interface for communications to occur.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

18.4 Containers.h File Reference

Container Classes for storing various types of data related to Image classes and others.

#include <deque>

#include <list>

#include <array>

#include <cstdint>

#include <ctime>

Include dependency graph for Containers.h:

Containers.h
deque list array cstdint ctime

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.4 Containers.h File Reference 263

This graph shows which files directly or indirectly include this file:

Containers.h

Compensation.h I

| ImageOps.h I ToneBuffer.h

ImageProject.h

Classes

* class iMS::ListBase< T >
Template Class encapsulating a list object and acting as a base list class for other classes in the library to inherit from.
* class iMS::DequeBase< T >

Template Class encapsulating a deque object and acting as a base deque class for other classes in the library to
inherit from.

Namespaces
« iIMS
The entire APl is encapsulated by the iMS namespace.

18.4.1 Detailed Description

Container Classes for storing various types of data related to Image classes and others.

Author

Dave Cowan

Date
2016-10-01

Since

1.3

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

264

File Documentation

18.5 Diagnostics.h File Reference

Access diagnostic reporting information about the connected iMS System.

#include "IMSSystem.h"
#include "IEventHandler.h"
#include <memory>

#include <map>

Include dependency graph for Diagnostics.h:

IMSSystem.h

IEventHandler.h IMSTypeDefs h ctime

SN

cstdint vector cmath stdexcept

Classes

+ class iMS::DiagnosticsEvents

All the different types of events that can be triggered by the Diagnostics class.

« class iMS::Diagnostics

Provides a mechanism for retrieving diagnostics data about the attached iMS System.

Namespaces

+ iIMS

The entire APl is encapsulated by the iMS namespace.

18.5.1 Detailed Description

Access diagnostic reporting information about the connected iMS System.

Diagnostics.h

The iMS provides a range of diagnostic reporting measures to ensure the continued health and safe function of the

Synthesiser, power amplifier and attached acousto-optic devices.

Diagnostics data includes:

» A record of hours recorded while the device was powered up
» The current temperature reading

» Forward current passing through each channel of the amplifier

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.6 FileSystem.h File Reference

265

+ Forward power for each amplifier channel

+ Reflected power for each amplifier channel

Some of this data may have been stored on the device's non-volatile memory by the factory so the user application
can compare against current readings and has a record of how the device performance has changed over time.

Author

Dave Cowan

Date

2016-03-08

Since

1.1

18.6 FileSystem.h File Reference

Classes for reading, writing and managing the file system built into an iMS Synthesiser.

#include
#include
#include
#include

"IMSSystem.h"
"IEventHandler.h"
<memory>
<array>

Include dependency graph for FileSystem.h:

FileSystem.h

array

IMSSystem.h

| IEventHandler.h IMSTypeDefs h ctime string
cstdint vector cmath stdexcept

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

266 File Documentation

This graph shows which files directly or indirectly include this file:

FileSystem.h
Auxiliary.h Compensation.h ToneBuffer.h
SystemFunc.h ImageProject.h

Classes

« struct iMS::FileSystemTableEntry

Contains all the parameters that uniquely locate a File within the Synthesiser FileSystem.
« class iMS::FileSystemTableViewer

Provides a mechanism for viewing the FileSystemTable associated with an iMS System.
« class iMS::FileSystemManager

Provides user management operations for working with Synthesiser FileSystems.
+ class iMS::UserFileReader

Provides a mechanism for retrieving User File data from the Synthesiser FileSystem.
* class iMS::UserFileWriter

Provides a mechanism for committing User File data to the Synthesiser FileSystem.

Namespaces

+ iIMS

The entire APl is encapsulated by the iMS namespace.

Typedefs

* using iMS::FileSystemIndex = int

FileSystemindex represents the entry number for a particular file in the FileSystemTable.

Enumerations

» enum iMS::FileSystemTypes : std::uint8_t {
iMS::FileSystemTypes::NO_FILE = 0, iMS::FileSystemTypes::COMPENSATION_TABLE = 1, iMS::File«~
SystemTypes::TONE_BUFFER = 2, iMS::FileSystemTypes::DDS_SCRIPT = 3,
iMS::FileSystemTypes::USER_DATA = 15}
All of the different (up to 15) types of file available to the filesystem.
» enum iMS::FileDefault : bool { iIMS::FileDefault::DEFAULT = true, iMS::FileDefault::NON_DEFAULT = false }

Default flag tags a file entry for execution at startup (only one per filetype)

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.6 FileSystem.h File Reference 267

Variables

+ const unsigned int iIMS::MAX_FST_ENTRIES = 33

Maximum number of entries that may be stored in the FileSystem.

18.6.1 Detailed Description

Classes for reading, writing and managing the file system built into an iIMS Synthesiser.

The Synthesiser includes an area of non-volatile memory which is used for permanent storage of a variety of
different data types.

A simple filesystem structure has been defined which arranges and organises the data stored in the memory,
allowing the user to keep track of data files and the system to perform relevant functions on the stored data, both
on command by the user, and at startup through the setting of default flags.

The filesystem allows up to MAX_FST_ENTRIES different files to be stored in the data area, with each entry being
one of 15 different types. Each file can be any size up to the maximum available space in the memory.

The file types so far defined are:

COMPENSATION_TABLE: contents are used for programming the Compensation Look-Up table

» TONE_BUFFER: contents are used for programming the Local Tone Buffer

DDS_SCRIPT: contents are DDSScriptRegister sequences for manual programming of the DDS

USER_DATA: has no functional use on the Synthesiser but can be used for application purposes, e.g. storing
application settings, or web pages

The FileSystem has a FileSystemTable associated with it which stores the starting addresses, lengths and types of
each file stored in the FileSystem, along with a default flag indicating whether it should be executed at startup and
a short (max 8 character) filename for descriptive purposes.

One file of each type may be tagged as a Default, in which case when the Synthesiser initialises, it will attempt to
Execute that file. If multiple files are tagged default, the lowest index of each type is executed and any subsequent
flags cleared.

File execution as a predictable effect on each type of file, except for USER_DATA, which does nothing (can only by
read and written).

At present, the total size of the filesystem on all Synthesiser models is 128kB with 1kB reserved for system use.
The FileSystemManager will allocate space in memory for data to be downloaded to but files must always be stored
contiguously therefore it is up to the user to ensure the FileSystem does not become excessively fragmented.

All files stored to the FileSystem of all types are prepended with a 2-byte marker symbol which is a requirement of
the FileSystem protocol.

When an IMSSystem object is initialised (typically through the ConnectionList::Scan() method), the FileSystemTable
is read back and made available for use by classes in this file.
Author

Dave Cowan

Date
2016-01-20

Since

1.1

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

268

File Documentation

18.7 IBulkTransfer.h File Reference

Interface Specification class for sending large binary data objects to the iMS.

#include "IMSSystem.h"
Include dependency graph for IBulkTransfer.h:

IBulkTransfer.h

IMSSystem.h

IMSTypeDefs.h ctime string

O\

cmath stdexcept cstdint vector

This graph shows which files directly or indirectly include this file:

IBulkTransfer.h

Compensation.h ImageOps.h ToneBuffer.h

ImageProject.h

Classes

« class iMS::IBulkTransfer

Interface Specification class for sending large binary data objects to the iMS.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.8 IEventHandler.h File Reference 269

Namespaces

« iIMS

The entire APl is encapsulated by the iMS namespace.

18.7.1 Detailed Description

Interface Specification class for sending large binary data objects to the iMS.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

18.8 IEventHandler.h File Reference

Interface Class for User Application code to receive and process events from the iMS library.

#include <vector>
#include <cstdint>
Include dependency graph for IEventHandler.h:

IEventHandler.h

/N

vector cstdint

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

270 File Documentation

This graph shows which files directly or indirectly include this file:

|IEventHandler.h

FileSystem.h

| Diagnostics.h | 1 ImageOps.h

SignalPath.h Auxiliary.h | | ToneBuffer.h | | Compensation.h |

SystemFunc.h

ImageProject.h

Classes

« class iMS::IEventHandler

Interface Class for an Event Handler to be defined in User Code and subscribed to library events.

Namespaces

+ iIMS

The entire APl is encapsulated by the iMS namespace.

18.8.1 Detailed Description

Interface Class for User Application code to receive and process events from the iMS library.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

18.9 Image.h File Reference

Classes for storing sequences of synchronous multi-channel RF drive data.

#include "IMSTypeDefs.h"
#include "Containers.h"
#include <deque>
#include <list>
#include <array>
#include <chrono>
#include <ctime>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.9 Image.h File Reference 271

Include dependency graph for Image.h:

Containers.h chrono

IMSTypeDefs.h

cmath stdexcept vector cstdint deque list array ctime

This graph shows which files directly or indirectly include this file:

ImageOps.h ToneBuffer.h

ImageProject.h

Classes

« class iMS::ImagePoint

Stores 4 FAP Triads containing frequency, amplitude and phase data for 4 RF channels.
+ class iMS::Image
A sequence of ImagePoints played out sequentially by the Controller and driven by the Synthesiser.
« struct iIMS::ImageTableEntry
An ImageTableEntry is created by the SDK on connecting to an iMS System, one for each Image that is stored in

Controller memory and allocated in the Image Index Table. Further ImageTableEntries are added to the table each
time an Image is downloaded to the Controller.

« struct iMS::lmageSequenceEntry
An ImageSequenceEntry object can be created by application software to specify the parameters by which an Image
is played back during an ImageSequence.

* class iMS::ImageSequence
An ImageSequence object completely defines a sequence to be played back on an iMS Controller in terms by con-
taining a list of ImageSequenceEntry 's plus a terminating action and optional value.

+ class iMS::ImageGroup

An ImageGroup collects together multiple associated images and a single ImageSequence for controlling Image
playback order.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

272 File Documentation

Namespaces

+ iIMS

The entire APl is encapsulated by the iMS namespace.

Typedefs

+ using iMS::Imagelndex = int
Each Imagelndex is an offset into the Image Index Table that uniquely refers to an Image stored in Controller Memory.
* typedef ImageGroup iMS::ImageFile

For backwards compatibility with code written against SDK 1.2.6 or earlier.

Enumerations

« enum iMS::ImageRepeats { iMS::ImageRepeats::NONE, iMS::ImageRepeats::PROGRAM, iMS::Image+«
Repeats::FOREVER }

Each Image can be repeated, either a programmable number of times, or indefinitely.

« enum iMS::SequenceTermAction : std::uint8_t {
iMS::SequenceTermAction::DISCARD = 0, iMS::SequenceTermAction::RECYCLE = 1, iMS::Sequence«
TermAction::STOP_DISCARD = 2, iMS::SequenceTermAction::STOP_RECYCLE = 3,
iMS::SequenceTermAction::REPEAT = 4, iMS::SequenceTermAction::REPEAT_FROM =51}

Operation to perform on the completion of the last repeat of the last entry in a Sequence.

18.9.1 Detailed Description

Classes for storing sequences of synchronous multi-channel RF drive data.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

18.10 ImageOps.h File Reference

Classes for downloading and playback of Image data.

#include "IMSSystem.h"
#include "IEventHandler.h"
#include "IBulkTransfer.h"
#include "Image.h"
#include <memory>
#include <thread>

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.10 ImageOps.h File Reference 273

Include dependency graph for ImageOps.h:

ImageOps.h

IBulkTransfer.h Image.h memory thread

chrono

IMSSystem.h

|IEventHandler.h IMSTypeDefs.h deque

vector cmath cstdint stdexcept

Classes

« class iMS::ImageDownloadEvents

All the different types of events that can be triggered by the ImageDownload class.
+ class iMS::iImageDownload

Provides a mechanism for downloading and verifying Images to a Controller's memory.
+ class iMS::ImagePlayerEvents

All the different types of events that can be triggered by the ImagePlayer class.
+ class iMS::ImagePlayer

Once an Image has been downloaded to Controller memory, ImagePlayer can be used to configure and begin play-
back.
« struct iMS::imagePlayer::PlayConfiguration

This struct sets the attributes for the ImagePlayer to use when initiating an Image Playback.
« class iMS::ImageTableViewer

Provides a mechanism for viewing the ImageTable associated with an iMS System.
* class iMS::SequenceDownload

This class is a worker for transmitting an ImageSequence to an iMS Controller and joining it to the back of the
sequence queue.
+ class iMS::SequenceEvents

All the different types of events that can be triggered by the SequenceManager class.
* class iMS::SequenceManager
+ struct iIMS::SequenceManager::SeqConfiguration

This struct sets the attributes for the Sequence to use when initiating an Sequence Playback.

Namespaces

« iIMS
The entire APl is encapsulated by the iMS namespace.

18.10.1 Detailed Description

Classes for downloading and playback of Image data.

ImageOps or Image Operations is one of the core features of the iMS Library, providing the user application with
the ability to download and verify Images and ImageGroups to an iMS Controller's memory along with the means to
configure, start and stop the Controller playback.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

274 File Documentation

Author

Dave Cowan

Date
2015-11-03

Since

1.0

18.11 ImageProject.h File Reference

Classes for organising Images and associated data.

#include "IMSTypeDefs.h"
#include "Containers.h"
#include "Image.h"

#include "Compensation.h"
#include "ToneBuffer.h"

Include dependency graph for ImageProject.h:

ImageProject.h

& :

IEventHandler.h IMSSystem.h

list

vector stdexcept cmath

deque ctime

array

cstdint

Classes

* class iMS::ImageGroupList

A List of ImageGroup's used as a container by ImageProject.
+ class iMS::CompensationFunctionList

A List of CompensationFunction's used as a container by ImageProject.
* class iMS::ToneBufferList

A List of ToneBuffer's used as a container by ImageProject.
« class iMS::ImageProject

An ImageProject allows the user to organise their data and store it on the host computer.

Namespaces

« iIMS

The entire APl is encapsulated by the iMS namespace.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.12 IMSSystem.h File Reference

275

18.11.1 Detailed Description

Classes for organising Images and associated data.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

18.12 IMSSystem.h File Reference

Classes within this group are used to store information about an iMS System and to Connect / Disconnect from it.

#include "IMSTypeDefs.h"
#include <ctime>

#include <string>

Include dependency graph for IMSSystem.h:

IMSSystem.h

IMSTypeDefs.h

ctime string

O\

cmath stdexcept

This graph shows which files directly or indirectly include this file:

IMSSystem.h

cstdint

FileSystem.h

IBulkTransfer.h

vector

l ConnectionList.h I] Diagnostics.h

SignalPath.h I l Auxiliary.h I l Compensation.h I l ToneBuffer.h I l ImageOps.h I

SystemFunc.h

ImageProject.h

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

276 File Documentation

Classes

« class iMS::IMSOption
An iMS Synthesiser can support one iMS Option, which adds an additional hardware function to the capabilities of
the Synthesiser.
+ struct iIMS::FWVersion
Stores the version number of firmware running on iMS hardware.
+ class iMS::IMSController
Stores Capabilities, Description, Model & Version Number of an iMS Controller.
« struct iMS::IMSController::Capabilities
Returns information about the capabilities of the Controller hardware.
« class iMS::IMSSynthesiser
Stores Capabilities, Description, Model & Version Number of an iMS Synthesiser.
+ struct iIMS::IMSSynthesiser::Capabilities
Returns information about the capabilities of the Synthesiser hardware.
+ class iMS::IMSSystem

An object representing the overall configuration of an attached iMS System and permits applications to connect to it.

Namespaces

+ iIMS

The entire APl is encapsulated by the iMS namespace.

18.12.1 Detailed Description

Classes within this group are used to store information about an iMS System and to Connect / Disconnect from it.

When a host system is scanned to find attached iMS Systems using ConnectionList::scan(), an IMSSystem object
is created for each system that it finds. The system is then probed to discover any Controllers and Synthesisers
that belong to it, along with any Option boards that are attached to the Synthesiser (e.g. Frequency doubling). If an
AO Deflector or Modulator is connected to the Synthesiser and/or an RF Amplifier, it will also attempt to find out any
information it can about those devices.

Once done, the IMSSystem object is returned to the User application. The User can read all of the data that has
been created about the iIMS System that was discovered, including system structure, capabilities, descriptions,
model numbers, serial numbers and firmware versions.

Much of the data that is stored about an iIMS System and its components is retrieved from a hardware database
which is crossreferenced by identity information read back from the hardware. The hardware database stored as a
resource within the library object.

Because the iIMS concept is modular in approach, there are many different configurations of an iMS which must all
be compatible with the iMS library. Therefore, IMSSystem is vital to many functions within the library to allow them
to carry out their objectives according to the capabilities of the attached hardware. As a result, you will see many
class constructors which require a const reference to an IMSSystem object so that they have the information about
hardware targetting available.

Two further features of IMSSystem are important to notice: the ability to Connect to and Disconnect from a system.
No functions can be carried out on an iMS System until it has been identified by the connection scan, and a
connection established by calling IMSSystem::Connect().

Author

Dave Cowan

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.13 IMSTypeDefs.h File Reference

277

Date
2015-11-03

Since

1.0

18.13 IMSTypeDefs.h File Reference

Useful Type Definitions for working with iMS Systems.

#include <cmath>

#include <stdexcept>

#include <cstdint>

#include <vector>

Include dependency graph for IMSTypeDefs.h:

IMSTypeDefs.h

O\

cmath stdexcept cstdint vector

This graph shows which files directly or indirectly include this file:

[MSTypeDefs.h |

| ConnectionListh | | Diagnostics.h |

SignalPath.h

H_

ImageProject.h

SystemFunc.h

Classes

* class iMS::Frequency

Type Definition for all operations that require a frequency specification.
* class iMS::kHz

Type Definition for all operations that require a frequency specification in kiloHertz.
* class iMS::MHz

Type Definition for all operations that require a frequency specification in MegaHertz.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

278 File Documentation

« class iMS::Percent

Type Definition for all operations that require a percentage specification.
+ class iMS::Degrees

Type Definition for all operations that require an angle specification in degrees.
« struct iIMS::FAP

FAP (Frequency/Amplitude/Phase) triad stores the instantaneous definition of a single RF output.
+ class iMS::RFChannel

Type that represents the integer values 1, 2, 3 and 4, one each for the RF Channels of an iMS Synthesiser.

Namespaces
« iMS
The entire APl is encapsulated by the iMS namespace.
18.13.1 Detailed Description
Useful Type Definitions for working with iMS Systems.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

18.14 LibVersion.h File Reference

Access the API's version information.

#include <string>
Include dependency graph for LibVersion.h:

LibVersion.h

string

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.14 LibVersion.h File Reference

279

Classes

« class iMS::LibVersion

Access the version information for the API.

Namespaces
« iIMS
The entire APl is encapsulated by the iMS namespace.

Macros

+ #define IMS_API_MAJOR 1

Major Version Number.
 #define IMS_API_MINOR 4

Minor Version Number.
 #define IMS_API_PATCH 2

Patch Version Number.
18.14.1 Detailed Description

Access the API's version information.

Author

Dave Cowan

Date
2015-11-03

Since

1.0

18.14.2 Macro Definition Documentation

18.14.2.1 #define IMS_API_MAJOR 1

Major Version Number.

The API Major Version number for use in preprocessing directives
18.14.2.2 #define IMS_API_MINOR 4

Minor Version Number.

The API Minor Version number for use in preprocessing directives
18.14.2.3 #define IMS_API_PATCH 2

Patch Version Number.

The API Patch Version number for use in preprocessing directives

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

280 File Documentation

18.15 SignalPath.h File Reference

Classes for controlling the flow of data and RF signals through the Synthesiser.

#include "IMSSystem.h"
#include "IEventHandler.h"
#include "IMSTypeDefs.h"
#include <memory>

#include <array>

#include <chrono>

Include dependency graph for SignalPath.h:

SignalPath.h

chrono

IMSSystem.h

IMSTypeDefs.h |[EventHandler.h

cmath stdexcept cstdint vector

This graph shows which files directly or indirectly include this file:

SignalPath.h

SystemFunc.h

Classes

* class iMS::SignalPathEvents

All the different types of events that can be triggered by the SignalPath class.
+ class iMS::SignalPath

Controls Signal routing and other parameters related to the RF output signals.
« struct iMS::VelocityConfiguration

Sets the parameters required to control the operation of the Encoder Input / Velocity Compensation function.

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.16 SystemFunc.h File Reference 281

Namespaces

« iIMS

The entire API is encapsulated by the iMS namespace.

18.15.1 Detailed Description

Classes for controlling the flow of data and RF signals through the Synthesiser.

SignalPath is one of the core features of the iIMS Library, providing the user application with the ability to configure
the routing of signal data (frequency, amplitude, phase and synchronous output busses), switching in and out
functions that affect the signal path, and control RF signal flow, such as DDS output power and modulation control

Author

Dave Cowan

Date
2015-11-03

Since

1.0

18.16 SystemFunc.h File Reference

Classes for performing system functions not directly related to RF signal generation and output.

#include "IMSSystem.h"
#include "IEventHandler.h"
#include "SignalPath.h"
#include "Auxiliary.h"
#include <cstdint>

#include <list>

#include <memory>

Include dependency graph for SystemFunc.h:

SystemFunc.h

list

cstdint vector stdexcept cmath

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

282

File Documentation

Classes

* class iMS::SystemFuncEvents

All the different types of events that can be triggered by the SystemFunc class.
+ class iMS::SystemFunc

Provides System Management functions not directly related to RF signal generation or signal path control.
« struct iMS::StartupConfiguration

The Synthesiser stores in its non-volatile memory a set of configuration values that are preloaded on startup.

Namespaces

« iIMS

The entire APl is encapsulated by the iMS namespace.

18.16.1 Detailed Description

Classes for performing system functions not directly related to RF signal generation and output.

Author

Dave Cowan

Date

2015-11-03

Since

1.0

18.17 ToneBuffer.h File Reference

Class for storing an array of Synthesiser tones.

#include
#include
#include
#include
#include
#include
#include

"IMSSystem.h"
"IEventHandler.h"
"IMSTypeDefs.h"
"IBulkTransfer.h"
"Image.h"
"FileSystem.h"
<array>

Include dependency graph for ToneBuffer.h:

list

cmath stdexcept vector

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

18.17 ToneBuffer.h File Reference 283

This graph shows which files directly or indirectly include this file:

ToneBuffer.h
A

ImageProject.h

Classes

« class iMS::ToneBufferEvents

All the different types of events that can be triggered by the ToneBuffer and ToneBufferDownload classes.
+ class iMS::ToneBuffer

An array of 4-channel FAP Tones stored in memory on the Synthesiser.
* class iMS::ToneBufferDownload

Provides a mechanism for downloading ToneBuffer's to a Synthesiser's LTB memory.

Namespaces
« iIMS
The entire APl is encapsulated by the iMS namespace.
Typedefs
+ using iMS::TBEntry = ImagePoint

TBEntry is synonymous with ImagePoint An entry in the Tone Buffer contains four FAPs, one per output channel and
is therefore comparable to a single ImagePoint making up one entry in an Image.

18.17.1 Detailed Description
Class for storing an array of Synthesiser tones.

Author

Dave Cowan

Date
2016-02-24

Since

1.0

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

284 File Documentation

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

Index

A

iMS::Auxiliary, 61
ACR

iMS::DDSScriptRegister, 96
ACTIVE

iMS::SignalPath, 217
AO_DEVICE

iMS::Diagnostics, 108
AOD_LOGGED_HOURS

iMS::DiagnosticsEvents, 111
AOD_TEMP_UPDATE

iMS::DiagnosticsEvents, 111
Addimage

iMS::ImageGroup, 147
AddPoint

iMS::lmage, 136
Address

iMS::FileSystemTableEntry, 119

iMS::ImageTableEntry, 174
Amplitude

iMS::CompensationPoint, 74
AmplitudeControl

iMS::SignalPath, 217
append

iMS::DDSScriptRegister, 98
assign

iMS::ListBase, 193
AssignLED

iMS::Auxiliary, 62
AssignSynchronousOutput

iMS::SignalPath, 219
Author

iMS::ImageGroup, 147, 148
Aucxiliary

iMS::Auxiliary, 62
Aucxiliary.h, 257
AuxiliaryEventSubscribe

iMS::Auxiliary, 62
AuxiliaryEventUnsubscribe

iMS::Auxiliary, 63

B
iMS::Auxiliary, 61
BYPASS
iMS::SignalPath, 217
begin
iMS::DequeBase, 102
iMS::ListBase, 193
iMS::ToneBuffer, 241

CFR

iMS::DDSScriptRegister, 96
CFTWO

iMS::DDSScriptRegister, 96
CHECKSUM

iMS::Auxiliary, 61
COMMS_HEALTHY

iMS::Aucxiliary, 61
COMMS_UNHEALTHY

iMS::Auxiliary, 61
COMPENSATION_TABLE

iMS, 57
CONTINUOUS

iMS::ImagePlayer, 154
CPOWO

iMS::DDSScriptRegister, 96
CSR

iMS::DDSScriptRegister, 96
CTRL_ACT

iMS::Auxiliary, 61
CWi1

iMS::DDSScriptRegister, 97
CW10

iMS::DDSScriptRegister, 97
CW11

iMS::DDSScriptRegister, 97
CW12

iMS::DDSScriptRegister, 97
CW13

iMS::DDSScriptRegister, 97
Cwi4

iMS::DDSScriptRegister, 97
CW15

iMS::DDSScriptRegister, 97
cw2

iMS::DDSScriptRegister, 97
CW3

iMS::DDSScriptRegister, 97
Cw4

iMS::DDSScriptRegister, 97
CW5

iMS::DDSScriptRegister, 97
CWeé

iMS::DDSScriptRegister, 97
CW7

iMS::DDSScriptRegister, 97
cws

iMS::DDSScriptRegister, 97
CW9

286

INDEX

iMS::DDSScriptRegister, 97
cbegin
iMS::DequeBase, 103
iMS::ListBase, 193
iMS::ToneBuffer, 241
cend
iMS::DequeBase, 103
iMS::ListBase, 193
iMS::ToneBuffer, 241
Clear
iMS::Image, 136
iMS::lmageGroup, 148
iMS::ImageProject, 165
clear
iMS::DequeBase, 103
iMS::ListBase, 193
ClearDefault
iMS::FileSystemManager, 114
ClearTone
iMS::SignalPath, 219
ClockRate
iMS::lmage, 137
Company
iMS::lmageGroup, 148
Compensation
iMS::SignalPath, 217
Compensation.h, 259
CompensationFunction
iMS::CompensationFunction, 70
CompensationFunctionContainer
iMS::lmageProject, 165
CompensationPoint
iMS::CompensationPoint, 73
CompensationPointSpecification
iMS::CompensationPointSpecification, 76
CompensationTable
iMS::CompensationTable, 79, 81, 82
CompensationTableDownload
iMS::CompensationTableDownload, 86
CompensationTableDownloadEventSubscribe
iMS::CompensationTableDownload, 86
CompensationTableDownloadEventUnsubscribe
iMS::CompensationTableDownload, 86
config
iMS::ConnectionList, 92
ConfigureNHF
iMS::SystemFunc, 233
ConfigureSyncDigitalOutput
iMS::SignalPath, 219
ConnPort
iMS::IMSSystem, 184
Connect
iMS::IMSSystem, 184
Connection
iMS::IMSSystem, 184
ConnectionConfig
iMS::ConnectionList::ConnectionConfig, 90
ConnectionList.h, 261

Containers.h, 262
CreatedTime
iMS::ImageGroup, 148
CreatedTimeFormat
iMS::ImageGroup, 148
Ctlr
iMS::IMSSystem, 184

DC_CURRENT_CH1
iMS::Diagnostics, 107
DC_CURRENT_CH2
iMS::Diagnostics, 107
DC_CURRENT_CH3
iMS::Diagnostics, 107
DC_CURRENT_CH4
iMS::Diagnostics, 107
DDS_PROFILE
iMS::Auxiliary, 60
DDS_SCRIPT
iMS, 57
DDSScriptDownload
iMS::DDSScriptDownload, 94
DDSScriptRegister
iMS::DDSScriptRegister, 97
DEFAULT
iMS, 57
DIAG_READ_FAILED
iMS::DiagnosticsEvents, 111
DIAGNOSTICS_UPDATE_AVAILABLE
iMS::DiagnosticsEvents, 111
DISCARD
iMS, 58
DOWNLOAD_ERROR
iMS::CompensationEvents, 69
iMS::ImageDownloadEvents, 144
iMS::ToneBufferEvents, 249
DOWNLOAD_FAIL_MEMORY_FULL
iMS::ImageDownloadEvents, 145
DOWNLOAD_FAIL_TRANSFER_ABORT
iMS::ImageDownloadEvents, 145
DOWNLOAD_FINISHED
iMS::CompensationEvents, 69
iMS::ImageDownloadEvents, 144
iMS::ToneBufferEvents, 249
Degrees
iMS::Degrees, 99
Delete
iMS::FileSystemManager, 115
Description
iMS::IMSController, 179
iMS::IMSSynthesiser, 182
iMS::Image, 137
iMS::ImageGroup, 148, 149
Diagnostics
iMS::Diagnostics, 108
Diagnostics.h, 264
DiagnosticsEventSubscribe
iMS::Diagnostics, 108
DiagnosticsEventUnsubscribe

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

INDEX

iMS::Diagnostics, 108
DisableEncoder

iMS::SignalPath, 220
Disconnect

iMS:: IMSSystem, 185
Download

iMS::SequenceDownload, 208

ENC_VEL_CH_X
iMS::SignalPathEvents, 226
ENC_VEL_CH_Y
iMS::SignalPathEvents, 226
ENCODER_CHANNEL
iMS::SignalPath, 217
ENCODER_MODE
iMS::SignalPath, 218
EXT_ANLG_INPUT
iMS::Auxiliary, 60
EXT_ANLG_READ_FAILED
iMS::AuxiliaryEvents, 65
EXT_ANLG_UPDATE_AVAILABLE
iMS::AuxiliaryEvents, 65
EXTERNAL
iMS::Auxiliary, 60
iMS::ImagePlayer, 154
iMS::SignalPath, 217, 218
iMS::SystemFunc, 233
EXTERNAL_AUTO
iMS::SystemFunc, 232
EXTERNAL_EXTENDED
iMS::SignalPath, 218
EXTERNAL_FAILOVER
iMS::SystemFunc, 232
EXTERNAL_FIXED
iMS::SystemFunc, 232
EXTERNAL_LOCKED
iMS::SystemFunc, 232
EXTERNAL_NOSIGNAL
iMS::SystemFunc, 232
EXTERNAL_VALID_UNLOCKED
iMS::SystemFunc, 232
empty
iMS::ListBase, 193
EnableAmplifier
iMS::SystemFunc, 233
EnableExternal
iMS::SystemFunc, 234
EnablelmagePathCompensation
iMS::SignalPath, 220
EnableRFChannels
iMS::SystemFunc, 234
EnableXYPhaseCompensation
iMS::SignalPath, 220
end
iMS::DequeBase, 103
iMS::ListBase, 194
iMS::ToneBuffer, 241, 242
Entries

iMS::FileSystemTableViewer, 121

iMS::ImageTableViewer, 177

erase

iMS::ListBase, 194
EventAction
iMS::IEventHandler, 129—131
Events
iMS::AuxiliaryEvents, 65
iMS::CompensationEvents, 68
iMS::DiagnosticsEvents, 111
iMS::ImageDownloadEvents, 144
iMS::ImagePlayerEvents, 159
iMS::SequenceEvents, 208
iMS::SignalPathEvents, 226
iMS::SystemFuncEvents, 238
iMS::ToneBufferEvents, 249
Execute
iMS::FileSystemManager, 115, 116
ExtClockDivide
iMS::Image, 137, 138
ExtDiv
iMS::ImageSequenceEntry, 171

FDW
iMS::DDSScriptRegister, 97
FOREVER
iMS, 57
FORWARD_POWER_CH1
iMS::Diagnostics, 107
FORWARD_POWER_CH2
iMS::Diagnostics, 107
FORWARD_POWER_CH3
iMS::Diagnostics, 107
FORWARD_POWER_CH4
iMS::Diagnostics, 107
FR1
iMS::DDSScriptRegister, 96
FR2
iMS::DDSScriptRegister, 96
FST
iMS::IMSSynthesiser, 182
FileDefault
iMS, 57
FileSystem.h, 265
FileSystemManager
iMS::FileSystemManager, 114
FileSystemTableEntry
iMS::FileSystemTableEntry, 119
FileSystemTableViewer
iMS::FileSystemTableViewer, 121
FileSystemTypes
iMS, 57
FindSpace
iMS::FileSystemManager, 116
Format
iMS::ImageTableEntry, 175
FreelmageContainer
iMS::ImageProject, 165
Frequency
iMS::Frequency, 124

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

288 INDEX
FrequencyAt HasFeature
iMS::CompensationTable, 82 iMS::LibVersion, 190
GRACEFULLY IBulkTransfer.h, 268
iMS::ImagePlayer, 155 IEventHandler.h, 269
GREEN IMAGE_DOWNLOAD_NEW_HANDLE
iMS::Auxiliary, 61 iMS::ImageDownloadEvents, 145
GetAnalogData IMAGE_FINISHED
iMS::Auxiliary, 63 iMS::ImagePlayerEvents, 159
GetCap IMAGE_STARTED

iMS::IMSController, 179

iMS::IMSSynthesiser, 182
GetClockReferenceFrequency

iMS::SystemFunc, 234
GetClockReferenceMode

iMS::SystemFunc, 234
GetClockReferenceStatus

iMS::SystemFunc, 235
GetDiagnosticsData

iMS::Diagnostics, 109
GetFAP

iMS::lmagePoint, 161
GetLoggedHours

iMS::Diagnostics, 109
GetMajor

iMS::LibVersion, 189
GetMinor

iMS::LibVersion, 189
GetPatch

iMS::LibVersion, 189
GetProgress

iMS::lmagePlayer, 156
GetSequenceUUID

iIMS::SequenceManager, 211
GetSyncA

iMS::lmagePoint, 161
GetSyncD

iMS::lmagePoint, 161
GetTemperature

iMS::Diagnostics, 109
GetUUID

iMS::DequeBase, 104

iMS::ListBase, 195
GetVerifyError

iMS::CompensationTableDownload, 87

iMS::IBulkTransfer, 127

iMS::ImageDownload, 142

iMS::ToneBufferDownload, 246
GetVersion

iMS::IMSController, 179

iMS::IMSSynthesiser, 182

iMS::LibVersion, 189

HOST
iMS::Auxiliary, 60
iMS::ImagePlayer, 154
iMS::SignalPath, 218
Handle
iMS::lmageTableEntry, 175

iMS::ImagePlayerEvents, 159

IMMEDIATELY

iMS,

iMS:

iMS::ImagePlayer, 155
53
COMPENSATION_TABLE, 57
DDS_SCRIPT, 57
DEFAULT, 57
DISCARD, 58
FOREVER, 57
FileDefault, 57
FileSystemTypes, 57
ImageRepeats, 57
NO_FILE, 57
NON_DEFAULT, 57
NONE, 57
PROGRAM, 57
RECYCLE, 58
REPEAT, 58
REPEAT_FROM, 58
STOP_DISCARD, 58
STOP_RECYCLE, 58
SequenceTermAction, 57
TBEntry, 57
TONE_BUFFER, 57
USER_DATA, 57

:Auxiliary, 59

A, 61

AssignLED, 62

Auxiliary, 62
AucxiliaryEventSubscribe, 62
AuxiliaryEventUnsubscribe, 63
B, 61

CHECKSUM, 61
COMMS_HEALTHY, 61
COMMS_UNHEALTHY, 61
CTRL_ACT, 61
DDS_PROFILE, 60
EXT_ANLG_INPUT, 60
EXTERNAL, 60

GREEN, 61
GetAnalogData, 63

HOST, 60

INTERLOCK, 61

LASER, 61

LED_SINK, 61
LED_SOURCE, 61
NPULS, 61

OFF, 60, 61

ON, 61

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

INDEX

289

iMS:

iMS::

iMS::

iMS::
iMS:

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

OVERTEMP, 61
PIXEL_ACT, 61
PLL_LOCK, 61
PULS, 61

RED, 61

RF_GATE, 61
SetDDSProfile, 63
UpdateAnaloglin, 64
UpdateAnalogOut, 64
YELLOW, 61

:AuxiliaryEvents, 64

EXT_ANLG_READ_FAILED, 65
EXT_ANLG_UPDATE_AVAILABLE, 65
Events, 65
CompensationEvents, 68
DOWNLOAD_ERROR, 69
DOWNLOAD_FINISHED, 69
Events, 68

RX_DDS_POWER, 69
VERIFY_FAIL, 69
VERIFY_SUCCESS, 69
CompensationFunction, 69
CompensationFunction, 70
CompensationFunctionList, 70

:CompensationPoint, 71

Amplitude, 74

CompensationPoint, 73

operator==, 74

Phase, 74

SyncAnlg, 75

SyncDig, 75

CompensationPointSpecification, 75

CompensationPointSpecification, 76

operator==, 77

CompensationTable, 77

CompensationTable, 79, 81, 82

FrequencyAt, 82

Save, 82

Size, 84

CompensationTableDownload, 84

CompensationTableDownload, 86

CompensationTableDownloadEventSubscribe, 86

CompensationTableDownloadEventUnsubscribe,
86

GetVerifyError, 87

StartDownload, 87

StartVerify, 87

Store, 88

ConnectionList, 90

config, 92

modules, 93

scan, 93

ConnectionList::ConnectionConfig, 88

ConnectionConfig, 90

IncludelnScan, 90

PortMask, 90

DDSScriptDownload, 93

DDSScriptDownload, 94

iMS::

iMS::

iMS::

iMS::
iMS::

Program, 94
DDSScriptRegister, 95
ACR, 96

append, 98

CFR, 96

CFTWO, 96

CPOWO, 96

CSR, 96

CW1, 97

Cw10, 97

CW11, 97

Cwi12, 97

CW13, 97

CWw14, 97

Cwi15, 97

Cwz, 97

CWwWag, 97

Cw4, 97

CWs5, 97

CWwe, 97

Cwz7, 97

Cws, 97

Cwo9, 97
DDSScriptRegister, 97
FDW, 97

FR1, 96

FR2, 96

LSRR, 96

Name, 96

RDW, 96

UPDATE, 97

Degrees, 98

Degrees, 99

operator double, 99
operator=, 99
RenderAsCalibrationTone, 100
RenderAsCompensationPoint, 100
RenderAslmagePoint, 100
DequeBase

begin, 102

cbegin, 103

cend, 103

clear, 103

end, 103

GetUUID, 104

insert, 104

ModifiedTime, 104
ModifiedTimeFormat, 104
Name, 104

operator==, 105
operator{], 105
DequeBase< T >, 100
Diagnostics, 106
AO_DEVICE, 108
DC_CURRENT_CH1, 107
DC_CURRENT_CH2, 107
DC_CURRENT_CHS3, 107
DC_CURRENT_CH4, 107

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

290

INDEX

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

Diagnostics, 108
DiagnosticsEventSubscribe, 108
DiagnosticsEventUnsubscribe, 108
FORWARD_POWER_CHT1, 107
FORWARD_POWER_CH2, 107
FORWARD_POWER_CHS3, 107
FORWARD_POWER_CH4, 107
GetDiagnosticsData, 109
GetLoggedHours, 109
GetTemperature, 109

MEASURE, 107
REFLECTED_POWER_CH1, 107
REFLECTED_POWER_CH2, 107
REFLECTED_POWER_CHS3, 107
REFLECTED_POWER_CH4, 107
RF_AMPLIFIER, 108

SYNTH, 108

TARGET, 107
UpdateDiagnostics, 110
DiagnosticsEvents, 110
AOD_LOGGED_HOURS, 111
AOD_TEMP_UPDATE, 111
DIAG_READ_FAILED, 111

DIAGNOSTICS_UPDATE_AVAILABLE, 111

Events, 111
RFA_LOGGED_HOURS, 111
RFA_TEMP_UPDATE, 111
SYN_LOGGED_HOURS, 111
FAP, 111

operator==, 113
FWVersion, 125
operator<<, 125
FileSystemManager, 113
ClearDefault, 114

Delete, 115

Execute, 115, 116
FileSystemManager, 114
FindSpace, 116

Sanitize, 116

SetDefault, 117
FileSystemTableEntry, 118
Address, 119
FileSystemTableEntry, 119
IsDefault, 119

Length, 119

Name, 120

Type, 120
FileSystemTableViewer, 120
Entries, 121
FileSystemTableViewer, 121
IsValid, 121

operator<<, 122
operatorf], 122

Frequency, 123

Frequency, 124

operator double, 124
operator=, 124
RenderAsPointRate, 124

iMS:

iMS::

iMS::

iMS::
iMS::
iMS::

iMS::
iMS::

iMS::

iMS::

iMS::

:IBulkTransfer, 126

GetVerifyError, 127
StartDownload, 127
StartVerify, 127
IEventHandler, 128
EventAction, 129—131
operator==, 131
IMSController, 178
Description, 179
GetCap, 179
GetVersion, 179
ImgTable, 179
IsValid, 179

Model, 180

IMSController::Capabilities, 65

IMSOption, 180
IMSSynthesiser, 181
Description, 182
FST, 182

GetCap, 182
GetVersion, 182
IsValid, 182

Model, 183

IMSSynthesiser::Capabilities, 66

IMSSystem, 183
ConnPort, 184
Connect, 184
Connection, 184
Ctlr, 184

Disconnect, 185
Open, 185
operator==, 185
Synth, 185

Image, 131
AddPoint, 136

Clear, 136
ClockRate, 137
Description, 137
ExtClockDivide, 137, 138
Image, 134-136
InsertPoint, 138, 139
RemovePoint, 139
Size, 140
ImageDownload, 140
GetVerifyError, 142
ImageDownload, 142

ImageDownloadEventSubscribe, 142
ImageDownloadEventUnsubscribe, 143

StartDownload, 143
StartVerify, 143

ImageDownloadEvents, 144
DOWNLOAD_ERROR, 144
DOWNLOAD_FAIL_MEMORY_FULL, 145

DOWNLOAD_FAIL_TRANSFER_ABORT, 145

DOWNLOAD_FINISHED, 144

Events, 144

IMAGE_DOWNLOAD_NEW_HANDLE, 145

VERIFY_FAIL, 145

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

INDEX

291

VERIFY_SUCCESS, 145
iMS::ImageGroup, 145

Addimage, 147

Author, 147, 148

Clear, 148

Company, 148

CreatedTime, 148

CreatedTimeFormat, 148

Description, 148, 149

ImageGroup, 147

Insertimage, 149

Removelmage, 149

Revision, 149

Sequence, 150

Size, 150
iMS::lmageGrouplList, 150
iMS::ImagePlayer, 151

CONTINUOUS, 154

EXTERNAL, 154

GRACEFULLY, 155

GetProgress, 156

HOST, 154

IMMEDIATELY, 155

INTERNAL, 154

INVERSE, 154

ImagePlayer, 155

ImagePlayerEventSubscribe, 156

ImagePlayerEventUnsubscribe, 156

ImageTrigger, 154

NORMAL, 154

POST_DELAY, 154

Play, 157

PointClock, 154

Polarity, 154

Repeats, 154

SetPostDelay, 157

Stop, 157, 158

StopStyle, 154
iMS::ImagePlayer::PlayConfiguration, 202
iMS::lmagePlayerEvents, 158

Events, 159

IMAGE_FINISHED, 159

IMAGE_STARTED, 159

POINT_PROGRESS, 159
iMS::ImagePoint, 159

GetFAP, 161

GetSyncA, 161

GetSyncD, 161

ImagePoint, 160, 161

operator==, 162

SetAll, 162

SetFAP, 162

SetSyncA, 162

SetSyncD, 163
iMS::ImageProject, 163

Clear, 165

CompensationFunctionContainer, 165

FreelmageContainer, 165

iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

ImageGroupContainer, 165
ImageProject, 164
Load, 165

Save, 165
ToneBufferContainer, 166
ImageSequence, 166
ImageSequence, 167
OnTermination, 168
TermAction, 168
TermValue, 168
ImageSequenceEntry, 168
ExtDiv, 171
ImageSequenceEntry, 170
IntOsc, 171

NumRpts, 171
operator==, 171
PostimgDelay, 171, 172
RptType, 172
SyncOutDelay, 172
uulib, 172
ImageTableEntry, 173
Address, 174

Format, 175

Handle, 175
ImageTableEntry, 174
NPts, 175

Name, 175

Size, 175

uulID, 175
ImageTableViewer, 176
Entries, 177
ImageTableViewer, 177
operator<<, 178
operator[], 177
LibVersion, 188
GetMajor, 189
GetMinor, 189
GetPatch, 189
GetVersion, 189
HasFeature, 190
IsAtLeast, 190

ListBase

assign, 193

begin, 193

cbegin, 193

cend, 193

clear, 193

empty, 193

end, 194

erase, 194

GetUUID, 195

insert, 195
ModifiedTime, 195
ModifiedTimeFormat, 196
Name, 196

operator==, 196
pop_back, 196
pop_front, 196

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

292

INDEX

iMS::
iMS::

iMS::

iMS::

iMS::

iMS::

iMS::

iMS:
iMS::

push_back, 196

push_front, 197

resize, 197

size, 197

ListBase< T >, 191

MHz, 197

MHz, 199

operator double, 199
operator=, 199
RenderAslmagePoint, 199
Percent, 200

operator double, 201
operator=, 201

Percent, 201
RenderAsCalibrationTone, 201
RenderAsCompensationPoint, 202
RenderAsimagePoint, 202
RFChannel, 203

operator int, 205

operator++, 205

operator=, 205

RFChannel, 204
SequenceDownload, 206
Download, 208
SequenceDownload, 207
SequenceEvents, 208

Events, 208
SEQUENCE_ERROR, 209
SEQUENCE_FINISHED, 208
SEQUENCE_START, 208
SequenceManager, 209
GetSequenceUUID, 211
QueueClear, 211
QueueCount, 211
RemoveSequence, 212
SequenceEventSubscribe, 212
SequenceEventUnsubscribe, 212
SequenceManager, 211
StartSequenceQueue, 213
UpdateTermination, 213, 214

:SequenceManager::SeqConfiguration, 206

SignalPath, 214

ACTIVE, 217

AmplitudeControl, 217
AssignSynchronousOutput, 219
BYPASS, 217

ClearTone, 219

Compensation, 217
ConfigureSyncDigitalOutput, 219
DisableEncoder, 220
ENCODER_CHANNEL, 217
ENCODER_MODE, 218
EXTERNAL, 217, 218
EXTERNAL_EXTENDED, 218
EnablelmagePathCompensation, 220
EnableXYPhaseCompensation, 220
HOST, 218

OFF, 217, 218

iMS::

iMS::
iMS::

ReportEncoderVelocity, 221
SYNC_SINK, 218

SYNC_SRC, 218
SetCalibrationTone, 221
SetChannelReversal, 222
SignalPath, 219
SignalPathEventSubscribe, 222
SignalPathEventUnsubscribe, 222
SwitchRFAmplitudeControlSource, 223
ToneBufferControl, 218
UpdateDDSPowerLevel, 223
UpdateEncoder, 223
UpdateLocalToneBuffer, 224
UpdatePhaseTuning, 225
UpdateRFAmplitude, 225
VELOCITY_MODE, 218
WIPER_1, 217

WIPER_2, 217

SignalPathEvents, 225

ENC_VEL _CH_X, 226
ENC_VEL_CH_Y, 226

Events, 226

RX_DDS_POWER, 226
StartupConfiguration, 226
SystemFunc, 229

ConfigureNHF, 233

EXTERNAL, 233
EXTERNAL_AUTO, 232
EXTERNAL_FAILOVER, 232
EXTERNAL_FIXED, 232
EXTERNAL_LOCKED, 232
EXTERNAL_NOSIGNAL, 232
EXTERNAL_VALID_UNLOCKED, 232
EnableAmplifier, 233
EnableExternal, 234
EnableRFChannels, 234
GetClockReferenceFrequency, 234
GetClockReferenceMode, 234
GetClockReferenceStatus, 235
INTERNAL, 232, 233
INTERNAL_LOCKED, 232
INTERNAL_UNLOCKED, 232
NHFLocalReset, 231
NO_ACTION, 232
PLLLockReference, 232
PLLLockStatus, 232
RESET_ON_COMMS_UNHEALTHY, 232
ReadSystemTemperature, 235
SetClockReferenceMode, 235
SetDDSUpdateClockSource, 236
StoreStartupConfig, 236
SystemFunc, 233
SystemFuncEventSubscribe, 236
SystemFuncEventUnsubscribe, 237
TEMP_SENSOR_1, 232
TEMP_SENSOR_2, 232
TemperatureSensor, 232
UpdateClockSource, 232

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

INDEX

293

iMS::SystemFuncEvents, 237

iMS:

iMS:

iMS:

iMS::
iMS::

iMS::

iMS::

iMS::

Events, 238
PIXEL_CHECKSUM_ERROR_COUNT, 238

:ToneBuffer, 238

begin, 241

cbegin, 241

cend, 241

end, 241, 242
Name, 242
operator==, 242
operator(], 242, 244
Size, 244
ToneBuffer, 240

:ToneBufferDownload, 244

GetVerifyError, 246

StartDownload, 247

StartVerify, 247

Store, 247

ToneBufferDownload, 246
ToneBufferDownloadEventSubscribe, 248
ToneBufferDownloadEventUnsubscribe, 248

:ToneBufferEvents, 249

DOWNLOAD_ERROR, 249
DOWNLOAD_FINISHED, 249
Events, 249

ToneBufferList, 249
UserFileReader, 250
Readback, 252
UserFileReader, 251
UserFileWriter, 252
Program, 253
UserFileWriter, 253
VelocityConfiguration, 254
SetVelGain, 255

kHz, 186

kHz, 187

operator double, 187
operator=, 187

IMS_API_MAJOR

LibVersion.h, 279

IMS_API_MINOR

LibVersion.h, 279

IMS_API_PATCH

LibVersion.h, 279

IMSSystem.h, 275
IMSTypeDefs.h, 277

INTE

INTE

INTE

INTE

RLOCK

iMS::Auxiliary, 61

RNAL

iMS::ImagePlayer, 154
iMS::SystemFunc, 232, 233
RNAL_LOCKED
iMS::SystemFunc, 232
RNAL_UNLOCKED
iMS::SystemFunc, 232

INVERSE

iMS::lmagePlayer, 154

Image

iMS::Image, 134—136

Image.h, 270
ImageDownload

iMS::ImageDownload, 142

ImageDownloadEventSubscribe

iMS::ImageDownload, 142

ImageDownloadEventUnsubscribe

iMS::ImageDownload, 143

ImageGroup

iMS::ImageGroup, 147

ImageGroupContainer

iMS::ImageProject, 165

ImageOps.h, 272
ImagePlayer

iMS::ImagePlayer, 155

ImagePlayerEventSubscribe

iMS::ImagePlayer, 156

ImagePlayerEventUnsubscribe

iMS::ImagePlayer, 156

ImagePoint

iMS::ImagePoint, 160, 161

ImageProject

iMS::ImageProject, 164

ImageProject.h, 274
ImageRepeats

iMS, 57

ImageSequence

iMS::ImageSequence, 167

ImageSequenceEntry

iMS::ImageSequenceEntry, 170

ImageTableEntry

iMS::ImageTableEntry, 174

ImageTableViewer

iMS::ImageTableViewer, 177

ImageTrigger

iMS::ImagePlayer, 154

ImgTable

iMS::IMSController, 179

IncludelnScan

iMS::ConnectionList::ConnectionConfig, 90

insert

iMS::DequeBase, 104
iMS::ListBase, 195

Insertimage

iMS::ImageGroup, 149

InsertPoint

iMS::lmage, 138, 139

IntOsc

iMS::ImageSequenceEntry, 171

IsAtLeast

iMS::LibVersion, 190

IsDefault

iMS::FileSystemTableEntry, 119

IsValid

kHz

iMS::FileSystemTableViewer, 121
iMS::IMSController, 179
iMS::IMSSynthesiser, 182

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

294

INDEX

iMS::kHz, 187

LASER
iMS::Auxiliary, 61
LED_SINK
iMS::Auxiliary, 61
LED_SOURCE
iMS::Auxiliary, 61
LSRR
iMS::DDSScriptRegister, 96
Length
iMS::FileSystemTableEntry, 119
LibVersion.h, 278
IMS_API_MAJOR, 279
IMS_API_MINOR, 279
IMS_API_PATCH, 279
Load
iMS::ImageProject, 165

MEASURE
iMS::Diagnostics, 107
MHz
iMS::MHz, 199
Model
iMS::IMSController, 180
iMS::IMSSynthesiser, 183
ModifiedTime
iMS::DequeBase, 104
iMS::ListBase, 195
ModifiedTimeFormat
iMS::DequeBase, 104
iMS::ListBase, 196
modules
iMS::ConnectionList, 93

NHFLocalReset
iMS::SystemFunc, 231
NO_ACTION
iMS::SystemFunc, 232
NO_FILE
iMS, 57
NON_DEFAULT
iMS, 57
NONE
iMS, 57
NORMAL
iMS::lmagePlayer, 154
NPULS
iMS::Auxiliary, 61
NPts
iMS::imageTableEntry, 175
Name
iMS::DDSScriptRegister, 96
iMS::DequeBase, 104
iMS::FileSystemTableEntry, 120
iMS::ImageTableEntry, 175
iMS::ListBase, 196
iMS::ToneBuffer, 242
NumRpts

iMS::ImageSequenceEntry, 171

OFF
iMS::Auxiliary, 60, 61
iMS::SignalPath, 217, 218
ON
iMS::Auxiliary, 61
OVERTEMP
iMS::Auxiliary, 61
OnTermination
iMS::ImageSequence, 168
Open
iMS::IMSSystem, 185
operator double
iMS::Degrees, 99
iMS::Frequency, 124
iMS::MHz, 199
iMS::Percent, 201
iMS::kHz, 187
operator int
iMS::RFChannel, 205
operator< <
iMS::FWVersion, 125
iMS::FileSystemTableViewer, 122
iMS::ImageTableViewer, 178
operator++
iMS::RFChannel, 205
operator=
iMS::Degrees, 99
iMS::Frequency, 124
iMS::MHz, 199
iMS::Percent, 201
iMS::RFChannel, 205
iMS::kHz, 187
operator==
iMS::CompensationPoint, 74

iMS::CompensationPointSpecification, 77

iMS::DequeBase, 105
iMS::FAP, 113
iMS::IEventHandler, 131
iMS::IMSSystem, 185
iMS::ImagePoint, 162
iMS::ImageSequenceEntry, 171
iMS::ListBase, 196
iMS::ToneBuffer, 242

operator(]
iMS::DequeBase, 105
iMS::FileSystemTableViewer, 122
iMS::ImageTableViewer, 177
iMS::ToneBuffer, 242, 244

PIXEL_ACT
iMS::Aucxiliary, 61

PIXEL_CHECKSUM_ERROR_COUNT

iMS::SystemFuncEvents, 238
PLL_LOCK

iMS::Auxiliary, 61
PLLLockReference

iMS::SystemFunc, 232

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

INDEX

295

PLLLockStatus

iMS::SystemFunc, 232
POINT_PROGRESS

iMS::lmagePlayerEvents, 159
POST_DELAY

iMS::ImagePlayer, 154
PROGRAM

iMS, 57
PULS

iMS::Auxiliary, 61
Percent

iMS::Percent, 201
Phase

iMS::CompensationPoint, 74
Play

iMS::lmagePlayer, 157
PointClock

iMS::lmagePlayer, 154
Polarity

iMS::ImagePlayer, 154
pop_back

iMS::ListBase, 196
pop_front

iMS::ListBase, 196
PortMask

iMS::ConnectionList::ConnectionConfig, 90

PostimgDelay

iMS::ImageSequenceEntry, 171, 172

Program
iMS::DDSScriptDownload, 94
iIMS::UserFileWriter, 253

push_back
iMS::ListBase, 196

push_front
iMS::ListBase, 197

QueueClear
iMS::SequenceManager, 211

QueueCount
iMS::SequenceManager, 211

RDW
iMS::DDSScriptRegister, 96
RECYCLE
iMS, 58
RED
iMS::Auxiliary, 61
REFLECTED_POWER_CH1
iMS::Diagnostics, 107
REFLECTED_POWER_CH2
iMS::Diagnostics, 107
REFLECTED_POWER_CH3
iMS::Diagnostics, 107
REFLECTED_POWER_CH4
iMS::Diagnostics, 107
REPEAT
iMS, 58
REPEAT_FROM
iMS, 58

RESET_ON_COMMS_UNHEALTHY
iMS::SystemFunc, 232
RF_AMPLIFIER
iMS::Diagnostics, 108
RF_GATE
iMS::Auxiliary, 61
RFA_LOGGED_HOURS
iMS::DiagnosticsEvents, 111
RFA_TEMP_UPDATE
iMS::DiagnosticsEvents, 111
RFChannel
iMS::RFChannel, 204
RX_DDS_POWER
iMS::CompensationEvents, 69
iMS::SignalPathEvents, 226
ReadSystemTemperature
iMS::SystemFunc, 235
Readback
iMS::UserFileReader, 252
Removelmage
iMS::ImageGroup, 149
RemovePoint
iMS::Image, 139
RemoveSequence
iMS::SequenceManager, 212
RenderAsCalibrationTone
iMS::Degrees, 100
iMS::Percent, 201
RenderAsCompensationPoint
iMS::Degrees, 100
iMS::Percent, 202
RenderAsimagePoint
iMS::Degrees, 100
iMS::MHz, 199
iMS::Percent, 202
RenderAsPointRate
iMS::Frequency, 124
Repeats
iMS::ImagePlayer, 154
ReportEncoderVelocity
iMS::SignalPath, 221
resize
iMS::ListBase, 197
Revision
iMS::ImageGroup, 149
RptType
iMS::ImageSequenceEntry, 172

SEQUENCE_ERROR
iMS::SequenceEvents, 209
SEQUENCE_FINISHED
iMS::SequenceEvents, 208
SEQUENCE_START
iMS::SequenceEvents, 208
STOP_DISCARD
iMS, 58
STOP_RECYCLE
iMS, 58
SYN_LOGGED_HOURS

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

296

INDEX

iMS::DiagnosticsEvents, 111
SYNC_SINK

iMS::SignalPath, 218
SYNC_SRC

iMS::SignalPath, 218
SYNTH

iMS::Diagnostics, 108
Sanitize

iMS::FileSystemManager, 116
Save

iMS::CompensationTable, 82

iMS::lmageProject, 165
scan

iMS::ConnectionList, 93
Sequence

iMS::lmageGroup, 150
SequenceDownload

iMS::SequenceDownload, 207
SequenceEventSubscribe

iMS::SequenceManager, 212
SequenceEventUnsubscribe

iMS::SequenceManager, 212
SequenceManager

iIMS::SequenceManager, 211
SequenceTermAction

iMS, 57
SetAll

iMS::lmagePoint, 162
SetCalibrationTone

iMS::SignalPath, 221
SetChannelReversal

iMS::SignalPath, 222
SetClockReferenceMode

iMS::SystemFunc, 235
SetDDSProfile

iMS::Auxiliary, 63
SetDDSUpdateClockSource

iMS::SystemFunc, 236
SetDefault

iMS::FileSystemManager, 117
SetFAP

iMS::ImagePoint, 162
SetPostDelay

iMS::lmagePlayer, 157
SetSyncA

iMS::ImagePoint, 162
SetSyncD

iMS::ImagePoint, 163
SetVelGain

iMS::VelocityConfiguration, 255
SignalPath

iMS::SignalPath, 219
SignalPath.h, 280
SignalPathEventSubscribe

iMS::SignalPath, 222
SignalPathEventUnsubscribe

iMS::SignalPath, 222
Size

iMS::CompensationTable, 84
iMS::Image, 140
iMS::ImageGroup, 150
iMS::ImageTableEntry, 175
iMS::ToneBuffer, 244
size
iMS::ListBase, 197
StartDownload

iMS::CompensationTableDownload, 87

iMS::IBulkTransfer, 127

iMS::ImageDownload, 143

iMS::ToneBufferDownload, 247
StartSequenceQueue

iMS::SequenceManager, 213
StartVerify

iMS::CompensationTableDownload, 87

iMS::IBulkTransfer, 127
iMS::ImageDownload, 143
iMS::ToneBufferDownload, 247
Stop
iMS::ImagePlayer, 157, 158
StopStyle
iMS::ImagePlayer, 154
Store

iMS::CompensationTableDownload, 88

iMS::ToneBufferDownload, 247
StoreStartupConfig

iMS::SystemFunc, 236
SwitchRFAmplitudeControlSource

iMS::SignalPath, 223
SyncAnlg

iMS::CompensationPoint, 75
SyncDig

iMS::CompensationPoint, 75
SyncOutDelay

iMS::ImageSequenceEntry, 172
Synth

iMS::IMSSystem, 185
SystemFunc

iMS::SystemFunc, 233
SystemFunc.h, 281
SystemFuncEventSubscribe

iMS::SystemFunc, 236
SystemFuncEventUnsubscribe

iMS::SystemFunc, 237

TARGET

iMS::Diagnostics, 107
TBEntry

iMS, 57
TEMP_SENSOR_1

iMS::SystemFunc, 232
TEMP_SENSOR_2

iMS::SystemFunc, 232
TONE_BUFFER

iMS, 57
TemperatureSensor

iMS::SystemFunc, 232
TermAction

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

INDEX

297

iMS::lmageSequence, 168
TermValue

iMS::lmageSequence, 168
ToneBuffer

WIPER_1
iMS::SignalPath, 217

WIPER_2
iMS::SignalPath, 217

iMS::ToneBuffer, 240
ToneBuffer.h, 282 YELLOW

ToneBufferContainer iMS::Aucxiliary, 61

iMS::lmageProject, 166
ToneBufferControl

iMS::SignalPath, 218
ToneBufferDownload

iMS::ToneBufferDownload, 246
ToneBufferDownloadEventSubscribe

iMS::ToneBufferDownload, 248
ToneBufferDownloadEventUnsubscribe

iMS::ToneBufferDownload, 248
Type

iMS::FileSystemTableEntry, 120

UPDATE
iMS::DDSScriptRegister, 97
USER_DATA
iMS, 57
uuiD
iMS::lmageSequenceEntry, 172
iMS::imageTableEntry, 175
UpdateAnalogin
iMS::Auxiliary, 64
UpdateAnalogOut
iMS::Auxiliary, 64
UpdateClockSource
iMS::SystemFunc, 232
UpdateDDSPowerlLevel
iMS::SignalPath, 223
UpdateDiagnostics
iMS::Diagnostics, 110
UpdateEncoder
iMS::SignalPath, 223
UpdateLocalToneBuffer
iMS::SignalPath, 224
UpdatePhaseTuning
iMS::SignalPath, 225
UpdateRFAmplitude
iMS::SignalPath, 225
UpdateTermination
iMS::SequenceManager, 213, 214
UserFileReader
iMS::UserFileReader, 251
UserFileWriter
iMS::UserFileWriter, 253

VELOCITY_MODE
iMS::SignalPath, 218
VERIFY_FAIL
iMS::CompensationEvents, 69
iMS::ImageDownloadEvents, 145
VERIFY_SUCCESS
iMS::CompensationEvents, 69
iMS::lmageDownloadEvents, 145

Generated on Wed Nov 1 2017 15:36:36 for Isomet Modular Synthesiser (iMS) API by Doxygen

	1 iMS Library and API Documentation
	1.1 Contents
	1.2 Overview
	1.3 What's Included
	1.3.1 Application Programmer's Interface
	1.3.2 .NET Wrapper

	1.4 Platform

	2 Software Library Architecture
	2.1 Software Library Architecture
	2.1.1 Connection List and IMS System
	2.1.2 Features
	2.1.3 Compensation Tables
	2.1.4 Images / Image Files
	2.1.5 Utilities

	3 Cross Language Support and Scripting Wrappers
	3.1 .NET Wrapper
	3.1.1 Initialisation
	3.1.2 Concepts
	3.1.3 WPF and INotifyPropertyChanged
	3.1.4 More Information

	3.2 Python Wrapper

	4 Utilities: iMS Hardware Server
	4.1 iMS Hardware Server

	5 Utilities: iMS Studio
	5.1 iMS Studio

	6 Tutorial 1(a): Setting up a project and connecting to an iMS
	6.1 Tutorial 1(a): Setting up a project and connecting to an iMS
	6.1.1 Prerequisites
	6.1.2 Step 1
	6.1.3 Step 2
	6.1.4 Step 3
	6.1.5 Step 4
	6.1.6 Step 5
	6.1.7 Step 6
	6.1.8 Step 7
	6.1.9 Step 8
	6.1.10 Step 9

	7 Tutorial 1(b): Programming and Playing an Image
	7.1 Tutorial 1(b): Programming and Playing an Image
	7.1.1 Step 1: Creating & Downloading a Compensation Table
	7.1.2 Step 2: Creating & Downloading an Image
	7.1.3 Step 3: Observing the Output
	7.1.4 Full Tutorial 1 Code Listing

	8 Tutorial 2: Using the API Message Handling System
	8.1 Tutorial 2: Using the API Message Handling System

	9 Glossary
	9.1 Glossary

	10 Release Notes
	10.1 v1.4.2
	10.2 v1.4.1
	10.3 v1.4.0
	10.4 v1.3.0
	10.5 v1.2.6
	10.6 v1.2.5
	10.7 v1.2.4
	10.8 v1.2.3
	10.9 v1.2.2
	10.10 v1.2.1
	10.11 v1.2.0
	10.12 v1.1.0
	10.13 v1.0.1
	10.14 v1.0.0

	11 Bug List
	12 Namespace Index
	12.1 Namespace List

	13 Hierarchical Index
	13.1 Class Hierarchy

	14 Class Index
	14.1 Class List

	15 File Index
	15.1 File List

	16 Namespace Documentation
	16.1 iMS Namespace Reference
	16.1.1 Detailed Description
	16.1.2 Typedef Documentation
	16.1.2.1 TBEntry

	16.1.3 Enumeration Type Documentation
	16.1.3.1 FileDefault
	16.1.3.2 FileSystemTypes
	16.1.3.3 ImageRepeats
	16.1.3.4 SequenceTermAction

	17 Class Documentation
	17.1 iMS::Auxiliary Class Reference
	17.1.1 Detailed Description
	17.1.2 Member Enumeration Documentation
	17.1.2.1 DDS_PROFILE
	17.1.2.2 EXT_ANLG_INPUT
	17.1.2.3 LED_SINK
	17.1.2.4 LED_SOURCE

	17.1.3 Constructor & Destructor Documentation
	17.1.3.1 Auxiliary(const IMSSystem &ims)

	17.1.4 Member Function Documentation
	17.1.4.1 AssignLED(const LED_SINK &sink, const LED_SOURCE &src) const
	17.1.4.2 AuxiliaryEventSubscribe(const int message, IEventHandler handler)
	17.1.4.3 AuxiliaryEventUnsubscribe(const int message, const IEventHandler handler)
	17.1.4.4 GetAnalogData() const
	17.1.4.5 SetDDSProfile(const DDS_PROFILE &prfl) const
	17.1.4.6 SetDDSProfile(const DDS_PROFILE &prfl, const std::uint16_t &select) const
	17.1.4.7 UpdateAnalogIn()
	17.1.4.8 UpdateAnalogOut(Percent &pct) const

	17.2 iMS::AuxiliaryEvents Class Reference
	17.2.1 Detailed Description
	17.2.2 Member Enumeration Documentation
	17.2.2.1 Events

	17.3 iMS::IMSController::Capabilities Struct Reference
	17.3.1 Detailed Description

	17.4 iMS::IMSSynthesiser::Capabilities Struct Reference
	17.4.1 Detailed Description

	17.5 iMS::CompensationEvents Class Reference
	17.5.1 Detailed Description
	17.5.2 Member Enumeration Documentation
	17.5.2.1 Events

	17.6 iMS::CompensationFunction Class Reference
	17.6.1 Detailed Description
	17.6.2 Constructor & Destructor Documentation
	17.6.2.1 CompensationFunction()

	17.7 iMS::CompensationFunctionList Class Reference
	17.7.1 Detailed Description

	17.8 iMS::CompensationPoint Class Reference
	17.8.1 Detailed Description
	17.8.2 Constructor & Destructor Documentation
	17.8.2.1 CompensationPoint(Percent ampl=0.0, Degrees phase=0.0, unsigned int sync_dig=0, double sync_anlg=0.0)

	17.8.3 Member Function Documentation
	17.8.3.1 Amplitude(const Percent &l)
	17.8.3.2 Amplitude() const
	17.8.3.3 operator==(CompensationPoint const &rhs) const
	17.8.3.4 Phase(const Degrees &phase)
	17.8.3.5 Phase() const
	17.8.3.6 SyncAnlg(const double &sync)
	17.8.3.7 SyncAnlg() const
	17.8.3.8 SyncDig(const unsigned int &sync)
	17.8.3.9 SyncDig() const

	17.9 iMS::CompensationPointSpecification Class Reference
	17.9.1 Detailed Description
	17.9.2 Constructor & Destructor Documentation
	17.9.2.1 CompensationPointSpecification(CompensationPoint pt=CompensationPoint(), MHz f=50.0)

	17.9.3 Member Function Documentation
	17.9.3.1 operator==(CompensationPointSpecification const &rhs) const

	17.10 iMS::CompensationTable Class Reference
	17.10.1 Detailed Description
	17.10.2 Constructor & Destructor Documentation
	17.10.2.1 CompensationTable()
	17.10.2.2 CompensationTable(const IMSSystem &iMS)
	17.10.2.3 CompensationTable(int LUTDepth, const MHz &lower_freq, const MHz &upper_freq)
	17.10.2.4 CompensationTable(const IMSSystem &iMS, const CompensationPoint &pt)
	17.10.2.5 CompensationTable(int LUTDepth, const MHz &lower_freq, const MHz &upper_freq, const CompensationPoint &pt)
	17.10.2.6 CompensationTable(const IMSSystem &iMS, const std::string &fileName)
	17.10.2.7 CompensationTable(int LUTDepth, const MHz &lower_freq, const MHz &upper_freq, const std::string &fileName)
	17.10.2.8 CompensationTable(const IMSSystem &iMS, const int entry)

	17.10.3 Member Function Documentation
	17.10.3.1 FrequencyAt(const unsigned int index) const
	17.10.3.2 Save(const std::string &fileName) const
	17.10.3.3 Size() const

	17.11 iMS::CompensationTableDownload Class Reference
	17.11.1 Detailed Description
	17.11.2 Constructor & Destructor Documentation
	17.11.2.1 CompensationTableDownload(IMSSystem &ims, const CompensationTable &tbl)

	17.11.3 Member Function Documentation
	17.11.3.1 CompensationTableDownloadEventSubscribe(const int message, IEventHandler handler)
	17.11.3.2 CompensationTableDownloadEventUnsubscribe(const int message, const IEventHandler handler)
	17.11.3.3 GetVerifyError()
	17.11.3.4 StartDownload()
	17.11.3.5 StartVerify()
	17.11.3.6 Store(FileDefault def, const std::string &FileName) const

	17.12 iMS::ConnectionList::ConnectionConfig Struct Reference
	17.12.1 Detailed Description
	17.12.2 Constructor & Destructor Documentation
	17.12.2.1 ConnectionConfig(bool inc=true, std::list< std::string > mask=std::list< std::string >())

	17.12.3 Member Data Documentation
	17.12.3.1 IncludeInScan
	17.12.3.2 PortMask

	17.13 iMS::ConnectionList Class Reference
	17.13.1 Detailed Description
	17.13.2 Member Function Documentation
	17.13.2.1 config()
	17.13.2.2 modules() const
	17.13.2.3 scan()

	17.14 iMS::DDSScriptDownload Class Reference
	17.14.1 Detailed Description
	17.14.2 Constructor & Destructor Documentation
	17.14.2.1 DDSScriptDownload(IMSSystem &ims, const DDSScript &script)

	17.14.3 Member Function Documentation
	17.14.3.1 Program(const std::string &FileName, FileDefault def=FileDefault::NON_DEFAULT) const

	17.15 iMS::DDSScriptRegister Class Reference
	17.15.1 Detailed Description
	17.15.2 Member Enumeration Documentation
	17.15.2.1 Name

	17.15.3 Constructor & Destructor Documentation
	17.15.3.1 DDSScriptRegister(Name name)
	17.15.3.2 DDSScriptRegister(Name name, const std::initializer_list< std::uint8_t > &data)

	17.15.4 Member Function Documentation
	17.15.4.1 append(const std::uint8_t &)

	17.16 iMS::Degrees Class Reference
	17.16.1 Detailed Description
	17.16.2 Constructor & Destructor Documentation
	17.16.2.1 Degrees(double arg)

	17.16.3 Member Function Documentation
	17.16.3.1 operator double() const
	17.16.3.2 operator=(double arg)
	17.16.3.3 RenderAsCalibrationTone(const IMSSystem &, const Degrees)
	17.16.3.4 RenderAsCompensationPoint(const IMSSystem &, const Degrees)
	17.16.3.5 RenderAsImagePoint(const IMSSystem &, const Degrees)

	17.17 iMS::DequeBase< T > Class Template Reference
	17.17.1 Detailed Description
	17.17.2 Member Function Documentation
	17.17.2.1 begin()
	17.17.2.2 begin() const
	17.17.2.3 cbegin() const
	17.17.2.4 cend() const
	17.17.2.5 clear()
	17.17.2.6 end()
	17.17.2.7 end() const
	17.17.2.8 GetUUID() const
	17.17.2.9 insert(iterator pos, const T &value)
	17.17.2.10 ModifiedTime() const
	17.17.2.11 ModifiedTimeFormat() const
	17.17.2.12 Name() const
	17.17.2.13 operator==(DequeBase const &rhs) const
	17.17.2.14 operator[](int idx)
	17.17.2.15 operator[](int idx) const

	17.18 iMS::Diagnostics Class Reference
	17.18.1 Detailed Description
	17.18.2 Member Enumeration Documentation
	17.18.2.1 MEASURE
	17.18.2.2 TARGET

	17.18.3 Constructor & Destructor Documentation
	17.18.3.1 Diagnostics(const IMSSystem &ims)

	17.18.4 Member Function Documentation
	17.18.4.1 DiagnosticsEventSubscribe(const int message, IEventHandler handler)
	17.18.4.2 DiagnosticsEventUnsubscribe(const int message, const IEventHandler handler)
	17.18.4.3 GetDiagnosticsData() const
	17.18.4.4 GetLoggedHours(const TARGET &tgt) const
	17.18.4.5 GetTemperature(const TARGET &tgt) const
	17.18.4.6 UpdateDiagnostics()

	17.19 iMS::DiagnosticsEvents Class Reference
	17.19.1 Detailed Description
	17.19.2 Member Enumeration Documentation
	17.19.2.1 Events

	17.20 iMS::FAP Struct Reference
	17.20.1 Detailed Description
	17.20.2 Member Function Documentation
	17.20.2.1 operator==(const FAP &other) const

	17.21 iMS::FileSystemManager Class Reference
	17.21.1 Detailed Description
	17.21.2 Constructor & Destructor Documentation
	17.21.2.1 FileSystemManager(IMSSystem &ims)

	17.21.3 Member Function Documentation
	17.21.3.1 ClearDefault(FileSystemIndex index)
	17.21.3.2 ClearDefault(const std::string &FileName)
	17.21.3.3 Delete(FileSystemIndex index)
	17.21.3.4 Delete(const std::string &FileName)
	17.21.3.5 Execute(FileSystemIndex index)
	17.21.3.6 Execute(const std::string &FileName)
	17.21.3.7 FindSpace(std::uint32_t &addr, const std::vector< std::uint8_t > &data) const
	17.21.3.8 Sanitize()
	17.21.3.9 SetDefault(FileSystemIndex index)
	17.21.3.10 SetDefault(const std::string &FileName)

	17.22 iMS::FileSystemTableEntry Struct Reference
	17.22.1 Detailed Description
	17.22.2 Constructor & Destructor Documentation
	17.22.2.1 FileSystemTableEntry()
	17.22.2.2 FileSystemTableEntry(FileSystemTypes type, std::uint32_t addr, std::uint32_t length, FileDefault def)
	17.22.2.3 FileSystemTableEntry(FileSystemTypes type, std::uint32_t addr, std::uint32_t length, FileDefault def, std::string name)

	17.22.3 Member Function Documentation
	17.22.3.1 Address() const
	17.22.3.2 IsDefault() const
	17.22.3.3 Length() const
	17.22.3.4 Name() const
	17.22.3.5 Type() const

	17.23 iMS::FileSystemTableViewer Class Reference
	17.23.1 Detailed Description
	17.23.2 Constructor & Destructor Documentation
	17.23.2.1 FileSystemTableViewer(const IMSSystem &ims)

	17.23.3 Member Function Documentation
	17.23.3.1 Entries() const
	17.23.3.2 IsValid() const
	17.23.3.3 operator[](const std::size_t idx) const

	17.23.4 Friends And Related Function Documentation
	17.23.4.1 operator<<

	17.24 iMS::Frequency Class Reference
	17.24.1 Detailed Description
	17.24.2 Constructor & Destructor Documentation
	17.24.2.1 Frequency(double arg=0.0)

	17.24.3 Member Function Documentation
	17.24.3.1 operator double() const
	17.24.3.2 operator=(double arg)
	17.24.3.3 RenderAsPointRate(const IMSSystem &, const Frequency, const bool PrescalerDisable=false)

	17.25 iMS::FWVersion Struct Reference
	17.25.1 Detailed Description
	17.25.2 Friends And Related Function Documentation
	17.25.2.1 operator<<

	17.26 iMS::IBulkTransfer Class Reference
	17.26.1 Detailed Description
	17.26.2 Member Function Documentation
	17.26.2.1 GetVerifyError()=0
	17.26.2.2 StartDownload()=0
	17.26.2.3 StartVerify()=0

	17.27 iMS::IEventHandler Class Reference
	17.27.1 Detailed Description
	17.27.2 Member Function Documentation
	17.27.2.1 EventAction(void sender, const int message, const int param=0)
	17.27.2.2 EventAction(void sender, const int message, const int param, const int param2)
	17.27.2.3 EventAction(void sender, const int message, const double param)
	17.27.2.4 EventAction(void sender, const int message, const int param, const std::vector< std::uint8_t > data)
	17.27.2.5 operator==(const IEventHandler e)

	17.28 iMS::Image Class Reference
	17.28.1 Detailed Description
	17.28.2 Constructor & Destructor Documentation
	17.28.2.1 Image(const std::string &name="""")
	17.28.2.2 Image(size_t nPts, const ImagePoint &pt, const std::string &name="""")
	17.28.2.3 Image(size_t nPts, const ImagePoint &pt, const Frequency &f, const std::string &name="""")
	17.28.2.4 Image(size_t nPts, const ImagePoint &pt, const int div, const std::string &name="""")
	17.28.2.5 Image(const_iterator first, const_iterator last, const std::string &name="""")
	17.28.2.6 Image(const_iterator first, const_iterator last, const Frequency &f, const std::string &name="""")
	17.28.2.7 Image(const_iterator first, const_iterator last, const int div, const std::string &name="""")

	17.28.3 Member Function Documentation
	17.28.3.1 AddPoint(const ImagePoint &pt)
	17.28.3.2 Clear()
	17.28.3.3 ClockRate(const Frequency &f)
	17.28.3.4 ClockRate() const
	17.28.3.5 Description()
	17.28.3.6 ExtClockDivide(const int div)
	17.28.3.7 ExtClockDivide() const
	17.28.3.8 InsertPoint(iterator it, const ImagePoint &pt)
	17.28.3.9 InsertPoint(iterator it, size_t nPts, const ImagePoint &pt)
	17.28.3.10 InsertPoint(iterator it, const_iterator first, const_iterator last)
	17.28.3.11 RemovePoint(iterator it)
	17.28.3.12 RemovePoint(iterator first, iterator last)
	17.28.3.13 Size() const

	17.29 iMS::ImageDownload Class Reference
	17.29.1 Detailed Description
	17.29.2 Constructor & Destructor Documentation
	17.29.2.1 ImageDownload(IMSSystem &ims, const Image &img)

	17.29.3 Member Function Documentation
	17.29.3.1 GetVerifyError()
	17.29.3.2 ImageDownloadEventSubscribe(const int message, IEventHandler handler)
	17.29.3.3 ImageDownloadEventUnsubscribe(const int message, const IEventHandler handler)
	17.29.3.4 StartDownload()
	17.29.3.5 StartVerify()

	17.30 iMS::ImageDownloadEvents Class Reference
	17.30.1 Detailed Description
	17.30.2 Member Enumeration Documentation
	17.30.2.1 Events

	17.31 iMS::ImageGroup Class Reference
	17.31.1 Detailed Description
	17.31.2 Constructor & Destructor Documentation
	17.31.2.1 ImageGroup(const std::string &name="""", const std::time_t &create_time=std::time(nullptr), const std::time_t &modified_time=std::time(nullptr))

	17.31.3 Member Function Documentation
	17.31.3.1 AddImage(const Image &img)
	17.31.3.2 Author()
	17.31.3.3 Author() const
	17.31.3.4 Clear()
	17.31.3.5 Company()
	17.31.3.6 Company() const
	17.31.3.7 CreatedTime() const
	17.31.3.8 CreatedTimeFormat() const
	17.31.3.9 Description()
	17.31.3.10 Description() const
	17.31.3.11 InsertImage(iterator it, const Image &img)
	17.31.3.12 RemoveImage(iterator it)
	17.31.3.13 RemoveImage(iterator first, iterator last)
	17.31.3.14 Revision()
	17.31.3.15 Revision() const
	17.31.3.16 Sequence()
	17.31.3.17 Sequence() const
	17.31.3.18 Size() const

	17.32 iMS::ImageGroupList Class Reference
	17.32.1 Detailed Description

	17.33 iMS::ImagePlayer Class Reference
	17.33.1 Detailed Description
	17.33.2 Member Typedef Documentation
	17.33.2.1 Repeats

	17.33.3 Member Enumeration Documentation
	17.33.3.1 ImageTrigger
	17.33.3.2 PointClock
	17.33.3.3 Polarity
	17.33.3.4 StopStyle

	17.33.4 Constructor & Destructor Documentation
	17.33.4.1 ImagePlayer(const IMSSystem &ims, const Image &img)
	17.33.4.2 ImagePlayer(const IMSSystem &ims, const Image &img, const PlayConfiguration &cfg)

	17.33.5 Member Function Documentation
	17.33.5.1 GetProgress()
	17.33.5.2 ImagePlayerEventSubscribe(const int message, IEventHandler handler)
	17.33.5.3 ImagePlayerEventUnsubscribe(const int message, const IEventHandler handler)
	17.33.5.4 Play(ImageTrigger start_trig=ImageTrigger::CONTINUOUS)
	17.33.5.5 SetPostDelay(const std::chrono::duration< double > &dly)
	17.33.5.6 Stop(StopStyle stop)
	17.33.5.7 Stop()

	17.34 iMS::ImagePlayerEvents Class Reference
	17.34.1 Detailed Description
	17.34.2 Member Enumeration Documentation
	17.34.2.1 Events

	17.35 iMS::ImagePoint Class Reference
	17.35.1 Detailed Description
	17.35.2 Constructor & Destructor Documentation
	17.35.2.1 ImagePoint(FAP fap)
	17.35.2.2 ImagePoint(FAP ch1, FAP ch2, FAP ch3, FAP ch4)
	17.35.2.3 ImagePoint(FAP fap, float synca, unsigned int syncd)
	17.35.2.4 ImagePoint(FAP ch1, FAP ch2, FAP ch3, FAP ch4, float synca_1, float synca_2, unsigned int syncd)

	17.35.3 Member Function Documentation
	17.35.3.1 GetFAP(const RFChannel) const
	17.35.3.2 GetSyncA(int index) const
	17.35.3.3 GetSyncD() const
	17.35.3.4 operator==(ImagePoint const &rhs) const
	17.35.3.5 SetAll(const FAP &)
	17.35.3.6 SetFAP(const RFChannel, const FAP &)
	17.35.3.7 SetFAP(const RFChannel)
	17.35.3.8 SetSyncA(int index, const float &value)
	17.35.3.9 SetSyncD(const unsigned int &value)

	17.36 iMS::ImageProject Class Reference
	17.36.1 Detailed Description
	17.36.2 Constructor & Destructor Documentation
	17.36.2.1 ImageProject()
	17.36.2.2 ImageProject(const std::string &fileName)

	17.36.3 Member Function Documentation
	17.36.3.1 Clear()
	17.36.3.2 CompensationFunctionContainer()
	17.36.3.3 FreeImageContainer()
	17.36.3.4 ImageGroupContainer()
	17.36.3.5 Load(const std::string &fileName)
	17.36.3.6 Save(const std::string &fileName)
	17.36.3.7 ToneBufferContainer()

	17.37 iMS::ImageSequence Class Reference
	17.37.1 Detailed Description
	17.37.2 Constructor & Destructor Documentation
	17.37.2.1 ImageSequence(SequenceTermAction action, int val=0)

	17.37.3 Member Function Documentation
	17.37.3.1 OnTermination(SequenceTermAction act, int val=0)
	17.37.3.2 TermAction() const
	17.37.3.3 TermValue() const

	17.38 iMS::ImageSequenceEntry Struct Reference
	17.38.1 Detailed Description
	17.38.2 Constructor & Destructor Documentation
	17.38.2.1 ImageSequenceEntry(const Image &img, const ImageRepeats &Rpt=ImageRepeats::NONE, const int rpts=0)
	17.38.2.2 ImageSequenceEntry(const ImageTableEntry &ite, const kHz &InternalClock=kHz(1.0), const ImageRepeats &Rpt=ImageRepeats::NONE, const int rpts=0)
	17.38.2.3 ImageSequenceEntry(const ImageTableEntry &ite, const int ExtClockDivide=1, const ImageRepeats &Rpt=ImageRepeats::NONE, const int rpts=0)

	17.38.3 Member Function Documentation
	17.38.3.1 ExtDiv() const
	17.38.3.2 IntOsc() const
	17.38.3.3 NumRpts() const
	17.38.3.4 operator==(ImageSequenceEntry const &rhs) const
	17.38.3.5 PostImgDelay()
	17.38.3.6 PostImgDelay() const
	17.38.3.7 RptType() const
	17.38.3.8 SyncOutDelay()
	17.38.3.9 SyncOutDelay() const
	17.38.3.10 UUID() const

	17.39 iMS::ImageTableEntry Struct Reference
	17.39.1 Detailed Description
	17.39.2 Constructor & Destructor Documentation
	17.39.2.1 ImageTableEntry()

	17.39.3 Member Function Documentation
	17.39.3.1 Address() const
	17.39.3.2 Format() const
	17.39.3.3 Handle() const
	17.39.3.4 Name() const
	17.39.3.5 NPts() const
	17.39.3.6 Size() const
	17.39.3.7 UUID() const

	17.40 iMS::ImageTableViewer Class Reference
	17.40.1 Detailed Description
	17.40.2 Constructor & Destructor Documentation
	17.40.2.1 ImageTableViewer(const IMSSystem &ims)

	17.40.3 Member Function Documentation
	17.40.3.1 Entries() const
	17.40.3.2 operator[](const std::size_t idx) const

	17.40.4 Friends And Related Function Documentation
	17.40.4.1 operator<<

	17.41 iMS::IMSController Class Reference
	17.41.1 Detailed Description
	17.41.2 Member Function Documentation
	17.41.2.1 Description() const
	17.41.2.2 GetCap() const
	17.41.2.3 GetVersion() const
	17.41.2.4 ImgTable() const
	17.41.2.5 IsValid() const
	17.41.2.6 Model() const

	17.42 iMS::IMSOption Class Reference
	17.42.1 Detailed Description

	17.43 iMS::IMSSynthesiser Class Reference
	17.43.1 Detailed Description
	17.43.2 Member Function Documentation
	17.43.2.1 Description() const
	17.43.2.2 FST() const
	17.43.2.3 GetCap() const
	17.43.2.4 GetVersion() const
	17.43.2.5 IsValid() const
	17.43.2.6 Model() const

	17.44 iMS::IMSSystem Class Reference
	17.44.1 Detailed Description
	17.44.2 Member Function Documentation
	17.44.2.1 Connect()
	17.44.2.2 Connection() const
	17.44.2.3 ConnPort() const
	17.44.2.4 Ctlr(const IMSController &)
	17.44.2.5 Ctlr() const
	17.44.2.6 Disconnect()
	17.44.2.7 Open() const
	17.44.2.8 operator==(IMSSystem const &rhs) const
	17.44.2.9 Synth(const IMSSynthesiser &)
	17.44.2.10 Synth() const

	17.45 iMS::kHz Class Reference
	17.45.1 Detailed Description
	17.45.2 Constructor & Destructor Documentation
	17.45.2.1 kHz(double arg)

	17.45.3 Member Function Documentation
	17.45.3.1 operator double() const
	17.45.3.2 operator=(double arg)

	17.46 iMS::LibVersion Class Reference
	17.46.1 Detailed Description
	17.46.2 Member Function Documentation
	17.46.2.1 GetMajor()
	17.46.2.2 GetMinor()
	17.46.2.3 GetPatch()
	17.46.2.4 GetVersion()
	17.46.2.5 HasFeature(const std::string &name)
	17.46.2.6 IsAtLeast(int major, int minor, int patch)

	17.47 iMS::ListBase< T > Class Template Reference
	17.47.1 Detailed Description
	17.47.2 Member Function Documentation
	17.47.2.1 assign(size_t n, const T &val)
	17.47.2.2 begin()
	17.47.2.3 begin() const
	17.47.2.4 cbegin() const
	17.47.2.5 cend() const
	17.47.2.6 clear()
	17.47.2.7 empty() const
	17.47.2.8 end()
	17.47.2.9 end() const
	17.47.2.10 erase(iterator position)
	17.47.2.11 erase(iterator first, iterator last)
	17.47.2.12 GetUUID() const
	17.47.2.13 insert(iterator position, const T &val)
	17.47.2.14 insert(iterator position, const_iterator first, const_iterator last)
	17.47.2.15 ModifiedTime() const
	17.47.2.16 ModifiedTimeFormat() const
	17.47.2.17 Name() const
	17.47.2.18 operator==(ListBase const &rhs) const
	17.47.2.19 pop_back()
	17.47.2.20 pop_front()
	17.47.2.21 push_back(const T &val)
	17.47.2.22 push_front(const T &val)
	17.47.2.23 resize(size_t n)
	17.47.2.24 size() const

	17.48 iMS::MHz Class Reference
	17.48.1 Detailed Description
	17.48.2 Constructor & Destructor Documentation
	17.48.2.1 MHz(double arg)

	17.48.3 Member Function Documentation
	17.48.3.1 operator double() const
	17.48.3.2 operator=(double arg)
	17.48.3.3 RenderAsImagePoint(const IMSSystem &, const MHz)

	17.49 iMS::Percent Class Reference
	17.49.1 Detailed Description
	17.49.2 Constructor & Destructor Documentation
	17.49.2.1 Percent()
	17.49.2.2 Percent(double arg)

	17.49.3 Member Function Documentation
	17.49.3.1 operator double() const
	17.49.3.2 operator=(double arg)
	17.49.3.3 RenderAsCalibrationTone(const IMSSystem &, const Percent)
	17.49.3.4 RenderAsCompensationPoint(const IMSSystem &, const Percent)
	17.49.3.5 RenderAsImagePoint(const IMSSystem &, const Percent)

	17.50 iMS::ImagePlayer::PlayConfiguration Struct Reference
	17.50.1 Detailed Description

	17.51 iMS::RFChannel Class Reference
	17.51.1 Detailed Description
	17.51.2 Constructor & Destructor Documentation
	17.51.2.1 RFChannel()
	17.51.2.2 RFChannel(int arg)

	17.51.3 Member Function Documentation
	17.51.3.1 operator int() const
	17.51.3.2 operator++()
	17.51.3.3 operator=(int arg)

	17.52 iMS::SequenceManager::SeqConfiguration Struct Reference
	17.52.1 Detailed Description

	17.53 iMS::SequenceDownload Class Reference
	17.53.1 Detailed Description
	17.53.2 Constructor & Destructor Documentation
	17.53.2.1 SequenceDownload(IMSSystem &ims, const ImageSequence &seq)

	17.53.3 Member Function Documentation
	17.53.3.1 Download()

	17.54 iMS::SequenceEvents Class Reference
	17.54.1 Detailed Description
	17.54.2 Member Enumeration Documentation
	17.54.2.1 Events

	17.55 iMS::SequenceManager Class Reference
	17.55.1 Detailed Description
	17.55.2 Constructor & Destructor Documentation
	17.55.2.1 SequenceManager(const IMSSystem &)

	17.55.3 Member Function Documentation
	17.55.3.1 GetSequenceUUID(int index, std::array< std::uint8_t, 16 > &uuid)
	17.55.3.2 QueueClear()
	17.55.3.3 QueueCount()
	17.55.3.4 RemoveSequence(const ImageSequence &seq)
	17.55.3.5 RemoveSequence(const std::array< std::uint8_t, 16 > &uuid)
	17.55.3.6 SequenceEventSubscribe(const int message, IEventHandler handler)
	17.55.3.7 SequenceEventUnsubscribe(const int message, const IEventHandler handler)
	17.55.3.8 StartSequenceQueue(const SeqConfiguration &cfg=SeqConfiguration(), ImageTrigger start_trig=ImageTrigger::CONTINUOUS)
	17.55.3.9 UpdateTermination(ImageSequence &seq, SequenceTermAction action, int val=0)
	17.55.3.10 UpdateTermination(const std::array< std::uint8_t, 16 > &uuid, SequenceTermAction action, int val=0)

	17.56 iMS::SignalPath Class Reference
	17.56.1 Detailed Description
	17.56.2 Member Enumeration Documentation
	17.56.2.1 AmplitudeControl
	17.56.2.2 Compensation
	17.56.2.3 ENCODER_CHANNEL
	17.56.2.4 ENCODER_MODE
	17.56.2.5 SYNC_SINK
	17.56.2.6 SYNC_SRC
	17.56.2.7 ToneBufferControl
	17.56.2.8 VELOCITY_MODE

	17.56.3 Constructor & Destructor Documentation
	17.56.3.1 SignalPath(const IMSSystem &ims)

	17.56.4 Member Function Documentation
	17.56.4.1 AssignSynchronousOutput(const SYNC_SINK &sink, const SYNC_SRC &src) const
	17.56.4.2 ClearTone()
	17.56.4.3 ConfigureSyncDigitalOutput(::std::chrono::nanoseconds delay=::std::chrono::nanoseconds::zero(),::std::chrono::nanoseconds pulse_length=::std::chrono::nanoseconds::zero())
	17.56.4.4 DisableEncoder()
	17.56.4.5 EnableImagePathCompensation(SignalPath::Compensation amplComp, SignalPath::Compensation phaseComp)
	17.56.4.6 EnableXYPhaseCompensation(bool XYCompEnable)
	17.56.4.7 ReportEncoderVelocity(ENCODER_CHANNEL chan)
	17.56.4.8 SetCalibrationTone(const FAP &fap)
	17.56.4.9 SetChannelReversal(bool reversal)
	17.56.4.10 SignalPathEventSubscribe(const int message, IEventHandler handler)
	17.56.4.11 SignalPathEventUnsubscribe(const int message, const IEventHandler handler)
	17.56.4.12 SwitchRFAmplitudeControlSource(const AmplitudeControl src)
	17.56.4.13 UpdateDDSPowerLevel(const Percent &power)
	17.56.4.14 UpdateEncoder(const VelocityConfiguration &velcomp)
	17.56.4.15 UpdateLocalToneBuffer(const ToneBufferControl &tbc, const unsigned int index, const SignalPath::Compensation AmplitudeComp=SignalPath::Compensation::ACTIVE, const SignalPath::Compensation PhaseComp=SignalPath::Compensation::ACTIVE)
	17.56.4.16 UpdateLocalToneBuffer(const ToneBufferControl &tbc)
	17.56.4.17 UpdateLocalToneBuffer(const SignalPath::Compensation AmplitudeComp, const SignalPath::Compensation PhaseComp)
	17.56.4.18 UpdateLocalToneBuffer(const unsigned int index)
	17.56.4.19 UpdatePhaseTuning(const RFChannel &channel, const Degrees &phase)
	17.56.4.20 UpdateRFAmplitude(const AmplitudeControl src, const Percent &l)

	17.57 iMS::SignalPathEvents Class Reference
	17.57.1 Detailed Description
	17.57.2 Member Enumeration Documentation
	17.57.2.1 Events

	17.58 iMS::StartupConfiguration Struct Reference
	17.58.1 Detailed Description

	17.59 iMS::SystemFunc Class Reference
	17.59.1 Detailed Description
	17.59.2 Member Enumeration Documentation
	17.59.2.1 NHFLocalReset
	17.59.2.2 PLLLockReference
	17.59.2.3 PLLLockStatus
	17.59.2.4 TemperatureSensor
	17.59.2.5 UpdateClockSource

	17.59.3 Constructor & Destructor Documentation
	17.59.3.1 SystemFunc(const IMSSystem &ims)

	17.59.4 Member Function Documentation
	17.59.4.1 ConfigureNHF(bool Enabled, int milliSeconds, NHFLocalReset reset)
	17.59.4.2 EnableAmplifier(bool en)
	17.59.4.3 EnableExternal(bool enable)
	17.59.4.4 EnableRFChannels(bool chan1_2, bool chan3_4)
	17.59.4.5 GetClockReferenceFrequency()
	17.59.4.6 GetClockReferenceMode()
	17.59.4.7 GetClockReferenceStatus()
	17.59.4.8 ReadSystemTemperature(SystemFunc::TemperatureSensor sensor)
	17.59.4.9 SetClockReferenceMode(SystemFunc::PLLLockReference mode, kHz ExternalFixedFreq=kHz(1000.0))
	17.59.4.10 SetDDSUpdateClockSource(UpdateClockSource src=UpdateClockSource::INTERNAL)
	17.59.4.11 StoreStartupConfig(const StartupConfiguration &cfg)
	17.59.4.12 SystemFuncEventSubscribe(const int message, IEventHandler handler)
	17.59.4.13 SystemFuncEventUnsubscribe(const int message, const IEventHandler handler)

	17.60 iMS::SystemFuncEvents Class Reference
	17.60.1 Detailed Description
	17.60.2 Member Enumeration Documentation
	17.60.2.1 Events

	17.61 iMS::ToneBuffer Class Reference
	17.61.1 Detailed Description
	17.61.2 Constructor & Destructor Documentation
	17.61.2.1 ToneBuffer(const std::string &name="""")
	17.61.2.2 ToneBuffer(const TBEntry &tbe, const std::string &name="""")
	17.61.2.3 ToneBuffer(const int entry, const std::string &name="""")

	17.61.3 Member Function Documentation
	17.61.3.1 begin()
	17.61.3.2 begin() const
	17.61.3.3 cbegin() const
	17.61.3.4 cend() const
	17.61.3.5 end()
	17.61.3.6 end() const
	17.61.3.7 Name() const
	17.61.3.8 operator==(ToneBuffer const &rhs) const
	17.61.3.9 operator[](std::size_t idx) const
	17.61.3.10 operator[](std::size_t idx)
	17.61.3.11 Size() const

	17.62 iMS::ToneBufferDownload Class Reference
	17.62.1 Detailed Description
	17.62.2 Constructor & Destructor Documentation
	17.62.2.1 ToneBufferDownload(IMSSystem &ims, const ToneBuffer &tb)

	17.62.3 Member Function Documentation
	17.62.3.1 GetVerifyError()
	17.62.3.2 StartDownload()
	17.62.3.3 StartDownload(ToneBuffer::const_iterator first, ToneBuffer::const_iterator last)
	17.62.3.4 StartDownload(ToneBuffer::const_iterator single)
	17.62.3.5 StartVerify()
	17.62.3.6 Store(const std::string &FileName, FileDefault def=FileDefault::NON_DEFAULT) const
	17.62.3.7 ToneBufferDownloadEventSubscribe(const int message, IEventHandler handler)
	17.62.3.8 ToneBufferDownloadEventUnsubscribe(const int message, const IEventHandler handler)

	17.63 iMS::ToneBufferEvents Class Reference
	17.63.1 Detailed Description
	17.63.2 Member Enumeration Documentation
	17.63.2.1 Events

	17.64 iMS::ToneBufferList Class Reference
	17.64.1 Detailed Description

	17.65 iMS::UserFileReader Class Reference
	17.65.1 Detailed Description
	17.65.2 Constructor & Destructor Documentation
	17.65.2.1 UserFileReader(const IMSSystem &ims, const FileSystemIndex index)
	17.65.2.2 UserFileReader(const IMSSystem &ims, const std::string &FileName)

	17.65.3 Member Function Documentation
	17.65.3.1 Readback(std::vector< std::uint8_t > &data)

	17.66 iMS::UserFileWriter Class Reference
	17.66.1 Detailed Description
	17.66.2 Constructor & Destructor Documentation
	17.66.2.1 UserFileWriter(IMSSystem &ims, const std::vector< std::uint8_t > &file_data, const std::string file_name)

	17.66.3 Member Function Documentation
	17.66.3.1 Program()

	17.67 iMS::VelocityConfiguration Struct Reference
	17.67.1 Detailed Description
	17.67.2 Member Function Documentation
	17.67.2.1 SetVelGain(const IMSSystem &ims, SignalPath::ENCODER_CHANNEL chan, kHz EncoderFreq, MHz DesiredFreqDeviation, bool Reverse=false)

	18 File Documentation
	18.1 Auxiliary.h File Reference
	18.1.1 Detailed Description

	18.2 Compensation.h File Reference
	18.2.1 Detailed Description

	18.3 ConnectionList.h File Reference
	18.3.1 Detailed Description

	18.4 Containers.h File Reference
	18.4.1 Detailed Description

	18.5 Diagnostics.h File Reference
	18.5.1 Detailed Description

	18.6 FileSystem.h File Reference
	18.6.1 Detailed Description

	18.7 IBulkTransfer.h File Reference
	18.7.1 Detailed Description

	18.8 IEventHandler.h File Reference
	18.8.1 Detailed Description

	18.9 Image.h File Reference
	18.9.1 Detailed Description

	18.10 ImageOps.h File Reference
	18.10.1 Detailed Description

	18.11 ImageProject.h File Reference
	18.11.1 Detailed Description

	18.12 IMSSystem.h File Reference
	18.12.1 Detailed Description

	18.13 IMSTypeDefs.h File Reference
	18.13.1 Detailed Description

	18.14 LibVersion.h File Reference
	18.14.1 Detailed Description
	18.14.2 Macro Definition Documentation
	18.14.2.1 IMS_API_MAJOR
	18.14.2.2 IMS_API_MINOR
	18.14.2.3 IMS_API_PATCH

	18.15 SignalPath.h File Reference
	18.15.1 Detailed Description

	18.16 SystemFunc.h File Reference
	18.16.1 Detailed Description

	18.17 ToneBuffer.h File Reference
	18.17.1 Detailed Description

	Index

